Гигантский резонанс в фотоделении ядер: былое и думы

В.Г.Недорезов Институт ядерных исследований РАН

Новые гамма пучки на основе фемтосекундных лазеров

Обратное комптоновское рассеяние Томсоновское рассеяние

Фемтосекундный лазер с импульсной мощностью около 10 Дж обеспечивает следующие параметры *ү*-пучка :

Энергия E_{γ} до 10 МэВ Разброс $\Delta E_{\gamma}/E_{\gamma}$ до 10⁻⁵ Интенсивность N_{γ} до 10⁶ γ /s Угол излучения до 1 мрад Частота повторения до 100 Гц

Compton back scattering technique

Synchrotron radiation at storage rings Brightness and total intensity

Compton back scattering history

1963 – F.Arutunyan, V.Tumanyan. JETF 44 (1963) 6, 2100. R.H.Milburn, Phys.Rev.Lett. 10 (1963) 3, 75

- 1964 Moscow (Lebedev FIAN) first experimental evidence
- 1976 Frascati (LADONE ADONE) photonuclear physics
- 1984 Novosibirsk Budker INP (ROKK 1,2 VEPP 3,4) meson photoproduction
- 1988 Brookhaven BNL (LEGS NSLS)
- 1995 Grenoble (GRAAL ESRF)
- 1998 Osaka (LEPS Spring-8)
- 2000 Duke (HIgS)

New history: FEMTOSECIND LASER DRIVEN GAMMA SOURCES

1) 10²² ph/s/mm^{2/}mrad²/0.1% bandwidth, 10 mrad, collimation of 4.5 mrad

X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator . S. Kneip, C. McGuffey, F. Dollar, M. S. Bloom, V. Chvykov et al. Appl. Phys. Lett. 99, 093701 (2011)

2) 3 × 10¹⁸ photons s⁻¹ mm⁻² mrad⁻² (per 0.1% bandwidth), 5–15 mrad. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source N. D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, S. Banerjee, J. Zhang and D. P. Umstadter* Nature photonics letters (Nov. 2013) p.1-4.

2)

A broad synchrotron like spectrum with average photon energy (critical energy) of Ecrit ' 10 keV like ESRF.

Low-lying "Pygmy" Dipole Resonances and Strength Functions

V. Werner¹

¹ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

Recent investigations into dipole resonances below the neutron separation threshold have focused on characterizing the properties of the so-called Pygmy Dipole Resonance (PDR). Electric dipole excitation strengths around 6-7 MeV are often attributed to this collective excitation mode, which is typically interpreted as an oscillation of a neutron skin versus the proton-neutron core. A complication for experiment is to distinguish such a mode from the low-energy tail of the Giant Dipole Resonance (GDR). The amount of extra PDR strength on top of a GDR tail depends largely on the choice, or the method of extraction of photon strength functions. Whereas most experimental searches for the PDR were performed on spherical nuclei, this presentation will focus on recent experiments on ⁷⁶Se [1,2], on the virge of deformation. Absolute cross sections of dipole excited states were determined using bremsstrahlung beams at the S-DALINAC facility at TU Darmstadt. Information on parities and decay paths were obtained at the HIGS facility at TUNL, Duke University.

N. Cooper *et al.*, Phys. Rev. C **86**, 034313 (2012).
 P. Goddard *et al.*, Phys. Rev. C, accepted.

Medium effect in the photoexcitation of a cluster in ⁶Li

T. Yamagata¹, H. Akimune¹, S. Nakayama², T. Shima³ and S. Miyamoto⁴

¹Department of Physics, Konan University, Kobe 658-8501, Japan ²Department of Physics, University of Tokushima, Tokushima 770-8502, Japan ³Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan ⁴Laboratory of Advanced Science & Technology for Industry (LASTI), University of Hyogo, Hyogo 678-0242, Japan

In the reactions of (p,p'), (7Li,7Be) and (3He,t) on the 6.7Li targets, new dipole resonances have been observed at Q~-30MeV, *i.e.* much higher excitation energy than the excitation energies of the giant dipole resonances (GDR's) in the target nuclei.¹⁾ Based on the comparison of the resonance energies, widths, excitation cross-sections and charged- particle decay-mode of the new resonances with those of the GDR and the spin dipole resonance (SDR) in ⁴He, it was concluded that the new resonances are the GDR's and the SDR's of the a cluster embedded in ^{6,7}Li or their analogs.²⁾ In this abstract, we call these new resonances to be the " dipole-excitation of the a cluster". Though the dipole-excitation of the a cluster would be strongly observed in photo-nuclear reactions, in the previous investigation of the ^{6,7}Li(y,n) reactions such resonances were not observed.³⁾

In the present work, we investigated the ⁶Li(γ ,n) reaction at a γ -ray energy range of E_{γ} =5-55 MeV generated via the Compton backscattering of laser photons with relativistic electrons in the storage ring, New SUBARU at the LASTI, University of Hvogo.

The observed excitation function shows two peaks at $E_{Y}\sim 12$ and 33 MeV. The former is consistent with the GDR in ⁶Li, as mentioned in Ref. 3. The latter may correspond to the dipole-excitation of the a cluster in ⁶Li. The excitation energy of GDR in the a cluster is higher than that of a free ⁴He by about 5 MeV which suggests that a size of the a cluster in ⁶Li is smaller than that of a free ⁴He.

S. Nakayama *et al.*, Phys. Rev. Lett. 87 (2001) 122502; T. Yamagata *et al.*, Phys. Rev. C 69 (2004) 044313.

T. Yamagata *et al.*, Phys. Rev C 74 (2006) 014309; ibid. C77 (2008) 021303(R);
 S. Nakayama *et al.*, ibid. C76 (2007) 021305(R); ibid. C 78 (2008) 014303.
 S.S. Dietrich and B.L. Berman, Atomic Data and Nucelar Data Tables 38 (1988)199.

SOFIA, a next-generation facility for fission yields measurements and fission study. First results and perspectives.

L. Audouin Institut de Physique Nucléaire d'Orsay, Université Paris-Sud

SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at GSI. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. Both fission fragments are fully identified in charge and mass (a world first) in a new recoil spectrometer, providing precise yields measurements. We will discuss the experimental set-up, present the results of the first experimental campaign of 2012 (during which a large variety of actinides and pre-actinides was studied, especially Np238) and the perspectives.

(P, e'f) -"Event-by-event control of the excitation energy" -! M, Z, odd-even effects !! precize,

37 NPNSND

Photodisintegration reactions with linear polarized

gamma-ray beam

T. Hayakawa¹, T. Miyamoto², T. Mochizuki², T. Horikawa², T. Amano², K. Imazaki³,
D. Li³, Y. Izawa³, K. Ogata⁴, S. Chiba⁵

1Japan Atomic Energy Agency, 2 University of Hyogo, 3Institute for Laser Technolog, 4 Osaka University, 5Tokyo Institute

A candidate of a nuclear reaction to detect hidden nuclear materials is photodisintegration reactions. The (polarized gamma, n) reactions have a chance to detect with high signal-to-noise ratio as nuclear resonance fluorescence. In 1950's, Agodi predicted that the angular distribution of cross sections in (gamma, n) reactions with a 100% linearly polarized gamma-ray beam for dipole excitation should be anisotropic and universally described by the simple function of a + b sin(2theta) at polar angle phi=90 degree. However, there is no experimental data with linear polarized photons except some light nuclei such as deuteron. We have verified experimentally this angular distribution on ¹⁹⁷Au, ¹²⁷I, and natural Cu using linearly polarized laser Compton scattering gamma-rays at NewSUBARU. We have measured neutron energy using a Time-Of-flight method. We have changed the angle of linear polarized plain of the incident laser. The neutron angular distributions on the three targets can be reduced by the formula predicted by Agodi. We have verified the Agodi's prediction over the wide range region for the first time.

Сечения фотоделения и полные сечения фотопоглощения

Рис. 2.4. Сечение полного фотопоглощения для ядер с $Z \ge 90$ в области гигантского дипольного резонанса:

 $1 - \frac{235 \text{U}[5]}{5}$; $2 - \frac{238 \text{U}[5]}{5}$; $3 - \frac{238 \text{U}[41]}{5}$; $4 - \frac{237 \text{Np}}{5}$. [5]; $5 - \frac{239 \text{Pu}[41]}{5}$.

Нейтронные и делительные ширины

Делимости

2.1.3. Ядра с Z ≥ 90

Для ядер с $Z \ge 90$, обладающих низким порогом деления ($B_i \simeq 26$ МэВ), сечения фотоделения с увеличением энергии γ -квантов примерно до 20 МэВ и выше становятся близки к полным сечениям фотопоглощения. Согласно статистической модели и многочисленным экспериментальным данным (см., например, [23]) делимость ядер при энергиях возбуждения до 40 МэВ определяется отношением нейтронных (Γ_n) и делительных (Γ_i) ширин

$$D_{f}(E_{\gamma}) = \frac{\Gamma_{f}}{\Gamma_{n} + \Gamma_{f}} + \frac{\Gamma_{n}}{\Gamma_{n}' + \Gamma_{f}'} \frac{\Gamma_{f}'}{\Gamma_{n}' + \Gamma_{f}'} + \cdots, \qquad (2.2)$$

где Γ'_n , Γ'_f — соответственно нейтронные и делительные ширины ядра, образовавшегося после вылета нейтрона. Расчетная зависимость D_f (E_γ) для ядер ²³²Th, ²³⁵U, ²³⁸U, ²³⁷Np показана на рис. 2.2. В рассматриваемой области относительные нейтронные и делительные ширины для тяжелых ядер практически не зависят от энергии возбуждения [23]. Таким образом, независимо от механизма возбуждения при условии, что вся энергия γ -кванта или значительная ее часть уходит на возбуждение ядра, сечение фотопоглощения очень быстро по мере увеличения энергии фотонов приближается к σ_i :

$$\sigma_{\gamma t} \left(E_{\gamma} \right) = \sigma_{\gamma f} + \sigma_{\gamma, nf} + \sigma_{\gamma, 2nf} + \cdots$$
(2.3)

С возрастанием энергии фотонов до нескольких сотен мегаэлектронвольт делению ядер в заметной степени могут предшествовать распа-

ды с испусканием быстрых протонов D_f делимость может уменьшаться за D_f счет снижения Z^2/A . Оценки, сделан- 1,0 ные в работе [21] для ядер ²³⁸U и ²³⁵U, предсказывают $D_f = 0,7 \div 0,9$ для обоих ядер в зависимости от выбран- C,8 ной модели барьеров деления (при $E_{\gamma} = 900$ МэВ). Однако детальные 0,6 расчеты зависимости делимости ядер от энергии фотонов до сих пор не проведены.

Тем не менее очевидно, что из рассматриваемых выше методов определения полных сечений фотопоглощения измерение сечений фотоделения трансурановых ядер дает наиболее близкое к полному сечению значение, поскольку процесс деления для этих ядер имеет минимальный порог по энергии воз-

Рис. 2.2. Зависимость делимости разных ядер от энергии возбуждения. Расчет по статистической модели.

Сечения возбуждения спонтанно делящихся изомеров.

Гангрский Ю.П, и др. Fortsch.Phys. 22,1 (1974) 199. U.Kneisl. U e.a. Fortsch.Phys. 30,2 (1982) 326.

Недорезов В.Г. и др. Nucl.Phys.324,1 (1979) 29.

Каскадно-испарительная модель

Рис. 3.8. Средние энергии возбуждения \vec{E}^* (*a*), угловые моменты \vec{M} (*ħ*) (*б*) и импульсы \vec{P} (*в*) для ядер, образовавшихся после окончания каскада в ядрах-мишенях урана (*1*), рутения (*2*) и алюминия (*3*) [63].

Рис. 3.9. Среднее значение изменения заряда ΔZ (*a*), массового числа ΔA (*б*) как функция массы ядра для трех энергий E_{γ} (*I* — 1; *2* — 0,6; *3* — 0,3 ГэВ) [63]. Точки — результат расчета, кривые проведены по точкам визуально.

5 8-2956

65

Массы осколков

Рис. 3.29. Отношение выходов осколков симметричного и асимметричного делений для различных энергий электронов [143, 144]: 1 - 235 U (e, f); 2 - 238 U (e, f); 3 - U (Y, f).

E.MaB

Новые задачи: Нелинейные эффекты КЭД в фотоядерных процессах Многофотонные обмены.

Фото- и электроделение ядер – актинидов (Za ~ 1)

Электромагнитная диссоциация релятивистских ядер : максимальные ЕМ поля в лабораторных условиях

Фемтосекундный лазер : релятивистские ЕМ поля

Нелинейные эффекты КЭД в фотоядерных процессах (ядра – актиниды)

Delbruck

Photon splitting

Coulomb scattering

Дельбрюковское рассеяние

Материал из Википедии — свободной энциклопедии

Дельбрю́ковское рассе́яние, рассе́яние Дельбрюка — рассеяние фотонов на виртуальных фотонах сильного электромагнитного поля (например, на кулоновском поле ядра). Это первый из предсказанных нелинейных эффектов квантовой электродинамики. Дельбрюковское рассеяние, в отличие от комптоновского, не меняет энергии фотона в системе отсчёта, в которой векторный потенциал поля в точке рассеяния равен нулю. Дельбрюковское рассеяние может происходить как с сохранением, так и с инверсией спина фотона.

Содержание

- 1 Механизм
- 2 Сечение рассеяния
- З История
- ∎ 4 См. также
- 5 Примечания
- 6 Литература

Механизм

Виртуальный фотон поля (снизу слева) порождает электронпозитронную пару (левая и нижняя стороны квадрата). Падающий фотон рассеивается на одном из лептонов, после чего тот аннигилирует со своей античастицей, порождая виртуальный фотон.

Сечение рассеяния

Для фотонов небольших энергий ($\hbar\omega \ll m_e c^2$) сечение рассеяния с сохранением спина^[1].

Фейнмановская диаграмма дельбрюковского рассеяния

$$d\sigma_{++} = d\sigma_{--} = 1,004 \cdot 10^{-3} (Z\alpha)^4 r_0^2 \cos^4(\vartheta/2) d\Omega$$

а сечение рассеяния с инверсией спина:

$$d\sigma_{+-} = d\sigma_{-+} = 3.81 \cdot 10^{-4} (Z\alpha)^4 r_0^2 \sin^4(\vartheta/2) d\Omega$$

где ϑ — угол рассеяния фотона, Z — зарядовое число атома, $d\Omega$ — элемент телесного угла, $r_0 = e^2/4\pi\varepsilon_0 m_e c^2$ — классический радиус электрона.

Photo and electronuclear processes

The differential cross section of Delbrück scattering for unpolarized photons is given by [4]

$$\frac{d\sigma}{d\Omega} = (Z\alpha)^4 r_0^2 \{ |A^{++}|^2 + |A^{+-}|^2 \},\$$

where r_0 is the classical electron radius, A^{++} and A^{+-} are non-helicity-flip and helicity-flip amplitudes.

Delbruk scattering, Photon splitting in the nuclear field

[Akhmadaliev, G.Y. Kezerashvili, S.G. Klimenko e.a. Phys.Rev.Lett. 89:061802, 2002.

Virtual photon spectrum Plane wave Born approximation

 $\lambda l - \text{multipolarity, } \alpha = 1/137$ $C_{L} - \text{structure function:}$ $C_{L} = 2(E_{e} - E_{\gamma})/E_{\epsilon} \text{ for } \lambda l = E1,$ $C_{L} = 0 \text{ for } \lambda l = M1,$ $C_{L} = 8/3 [(E_{e} - E_{\gamma})/E_{\epsilon}]^{2} \text{ forf } \lambda l = E2,$

C_L depends also on the nuclear size and charge.

[В.Г.Недорезов, Ю.Н.Ранюк. Фотоделение ядер за гигантским резонансом]. Гл.1. «Наукова думка» (1989).]

$$N^{\lambda l}(E_{e} = E_{e}, E_{\gamma}) = \frac{\alpha}{\pi} \{ [1 + (\frac{E_{e} - E_{\gamma}}{E_{e}})^{2}] x \ln \frac{2E_{e}(E_{e} - m_{e})}{m_{e}E_{e}} - C_{L} \}$$

Photofission of actinide nuclei with low energy and momentum transfer Inelastic Compton scattering ? Inelastic e+e- pair production ?

> Я ДЕРНАЯ ФИЗИКА JOURNAL OF NUCLEAR PHYSICS т. 55, вып. 10, 1992

© 1992 г. ИВАНОВ Д.И., КЕЗЕРАШВИЛИ Г.Я.¹, НЕДОРЕЗОВ В.Г., СУДОВ А.С., ТУРИНГЕ А.А.²

СИММЕТРИЧНОЕ И АСИММЕТРИЧНОЕ ДЕЛЕНИЕ ЯДЕР²³⁸U И ²³⁵U МЕЧЕНЫМИ ФОТОНАМИ СРЕДНИХ ЭНЕРГИЙ

ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ РАН

(Поступила в редакцию 31 марта 1992 г.)

На пучке тормозных фотонов с энергией $E_{\gamma}^{max} = 2$ ГэВ, меченных в диапазоне $E_{\gamma} = 60 \div 240$ МэВ, на накопителе электронов ВЭПП-З ИЯФ СО РАН измерена вероятность симметричного (S) и асимметричного (A) деления ядер ²³⁸U и ²³⁵U. Показано, что отношение S/A, измеренное во всем тормозном спектре, составляет (32 ± 2)% и (20 ± 1)% для ядер ²³⁸U и ²³⁵U соответственно, а устредненное по диапазону энергий $E_{\gamma} = 60 \div 240$ МэВ равно (43 ± 4)% и (44 ± 3)% соответственно. Это означает, по-видимому, что при средних энергиях фотонов, соответствующих квазидейтронному механизму фотопоглощения и фоторождению пионов в области Δ -резонанса, большая часть ядер делится из низковозбужденных состояний, образующихся после прохождения внутриядерного каскада.

²³⁵U fission: S/A = 0.4 at E_{γ} = 60 — 240 MeV

Coincidence experiment:

Fission fragments + high energy particle in forward direction

Ex(MeV)

Fig. 4. Probability of the (r,xf) reaction relatively to the total fission yield (r,f) as function of the tagged photon energy averaged over ²³⁸U and ²³⁷Np nuclei. One point () corresponds to the Compton back scattered photons measurements at VEPP-4 [5].

Cross section of the reaction ²⁴³Am (e, n) ^{242mf}Am [1]. Points are the experimental result, dotted line - the result of approximation. The solid curve shows the contribution of the dipole resonance with estimated errors.

1. V.L.Kuznetsov, L.E.Lazareva, V.G.Nedorezov e.a. Nucl. Phys. A381 (1982) 1439.

Electrofisson of actinide nuclei Shape Isomers

Фото- и электроделение ядер актинидов: Старые нерешенные проблемы

Вклад процессов с малой передачей энергии и импульса как для реальных, так и виртуальных фотонов

Спектр виртуальных фотонов в инклюзивных сечениях рассеяния электронов

EM dissociaton Multi-photon exchanges

b > b_{min} = R_i + R_t (incident + target) $F = \frac{Z^2 \alpha}{\pi^2 b^2} \frac{1}{\omega}$ Virtual photon flux

Virtual photon spectrum (integrated over b), $Z = Z_t$

$$\frac{dn(\omega)}{d\omega} \approx \frac{z^2 \alpha}{\pi} \frac{1}{\omega} f(\frac{\omega b_{\min}}{\gamma})$$

[X.Artru e.a. PL 40B (1972) 43]

EM dissociation Experiment

Photoneutron and photofission reactions

¹⁸O (1.7 GeV/n) + Be, C,AL,Ti, Cu, Sn, W, Pb, U

[D.E.Greiner, B.L.Berman e.a. Phys.Rev. C24 (1981) 4, 1529.]

S.M.Polikanov e.a., preprint GSI (1980).

EM - Photofission of 238-U at 1 GeV.

Average number of virtual photons in Au + Au (RHIK) и Pb + Pb (LHC)

 $\begin{array}{c} 10 & -2 \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\ & & & & & & & & & & & \\ \end{array}$

b – impact parameter LO – leading order

I.A.Pschenichnov, EMIN 2006

 $\sigma_s^{ED}(\text{LO}) = 2\pi \int_{b_c}^{\infty} bdb P_s(b) = 2\pi \int_{b_c}^{\infty} bdb m_{A_2}(b) e^{-m_{A_2}(b)},$

 $\sigma_s^{ED}({
m NLO}_2) = 2\pi \int\limits_{b_c}^{\infty} b db rac{m_{A_2}^2(b)}{2} e^{-m_{A_2}(b)}.$

Multi-fragmentation Multi-photon exchange? In contradiction with experiments with real photons

P.Zarubin, EMAX-2009

Поиск мультифрагментации ядер на пучках фотонов, электронов, протонов

Probability of ¹²C decay into a given number of fragments following the absorption of a 700-1500 MeV photon.

[V.Nedorezov, I.Pshenichnov, A.Turunge, Nucleus – 2013]

Relativistic electromagnetic fields produced by femtosecond laser Mourou G., Tajima T., Bulanov S.V. // Review of Modern Physics. 2006. V.78. P.309-371

Time duration — to 10^{-15} s (femtosecond)

Wave packet length — to 10 μ m (10 waves)

Pulse energy - to 100 J (10^{20} eV), power - to 10^{15} Wt (petawatt).

Focus on radius of 10 μ m provides W = 10²⁰ Wt/cm²

```
Electric field strength E = 10^{12} \text{ V/cm}
```

(For comparison: in the hidrogen field $E = 10^9$ В/см., at mica breakdown - 10⁶ В/см).

At E ~10¹¹ V/cm, respectively W ~10¹⁸ BT/cm² ($\lambda = 1 \mu m$) electron is accelerated to relativistic velosity being closed to the light one. Therefore such field is defined as the relativistic one .

Nuclear processes initiated by femtosecond laser

A.B.Andreev, B.M.Gordienko, A.B.Savel'ev. Quantum electromnics 31,11. 2001, 941-956

At present time the electron beams above 1 GeV and proton and ion beams above 50 MeV /n are available

Laser facility ILC MSU (Lomonosov University)

Reaction chamber

λ = 800 nm, t = 50 fs, f = 10 Hz, E = 50 мJ, D = 4 μm.

P = 10^{19} Wt/cm², respectively E_e ~1 M₃B.

Target — Pb

New photonuclear methods based on femtosecond lasers <u>K.A. Ivanov</u>¹, S.A. Shulyapov¹, A.V. Rusakov², A.A. Turinge², A.V. Brantov³, A.B. Savel'ev¹, R.M. Djilkibaev², V.G. Nedorezov², D.S. Uryupina¹, R.V. Volkov¹, V.Yu. Bychenkov³ ¹ ILC MSU,² INR RAS, ³ FIAN

Cheremkov readings (2012) FIAN, Moscow

Experimental results: Δ E-E spectra for electrons and gammas with energy up to 5 MeV

Заключение

Фото и электроделение ядер – актуальная тема для GSI, KEK, Duke university (USA) etc.

Уточнение старых данных по сечениям, массовым и зарядовым распределениям осколков деления, для фиксированной энергии возбуждения.

Новые эксперименты :

- Фотоделение ядер и фото-фрагментация
- ЕМ диссоциация,
- Фотоядерные процессы под действием фемтосекундного лазера?

Новые пучки на основе обратного Комптона дают новые возможности : Поляризация фотонов – угловые распределения и спиновые характеристики