Учет влияния структурных особенностей гигантского дипольного резонанса при описании фотонуклонных реакций в рамках статистических моделей

В.Н. Орлин

Схема распада входного состояния

 $P(n=0,m_0,E_1) = 1;$ $\sigma(n_f,E) = P(n_f,E=0)\sigma_{abs}(E)$

Вероятность заселения состояния $|n+1, m, E_l\rangle$ дается выражением

Для вероятности заселения равновесного состояния $|n+1, E_k\rangle$ имеем

где $\bar{m}_k \approx 0.4 \sqrt{aE_k}$ — среднее число экситонов в равновесном состоянии при энергии E_k .

1. Учет изоспиновых эффектов $T_{>} = T_{0} + 1$ $T_0 + 3/2$ $T_{<} = T_{0}$ р n $T_0 + 1/2$ γ $T_0 + 1/2$ Δ_T Z-1, N $T_0 - 1/2$ Z, N-1 T_0 Ζ, Ν

Схема возбуждения и распада $T_{<}$ - и $T_{>}$ -состояний ГДР в ядре $\{Z, N\}$.

В статистических моделях для описания скорости нуклонного распада *m*-экситонного состояния обычно используется соотношение вида

$$\lambda_j(m,\varepsilon,E) = \frac{2s+1}{\pi^2\hbar^3} \mu \varepsilon \sigma_j^{\rm obp}(\varepsilon) \, \frac{\omega(m-1,U)}{\omega(m,E)},$$

полученное с помощью принципа детального равновесия (где s, μ и $\sigma_j^{o6p}(\varepsilon)$ — спин, приведенная масса и сечение обратной реакции для испускаемого в континуум нуклона типа j с энергией ε , $\omega(m, E)$ — плотность m-экситонных состояний с энергией возбуждения $E, U = E - B_j - \varepsilon$ — энергия возбуждения остаточного ядра.)

Пусть A(T) — начальное состояние системы со статистическим весом $G_A = \omega(m; E, T)$ и B(T') — конечное состояние с весом $G_B = \omega(m-1; U, T')V(2s+1)/(2\pi^2\hbar^3)\sqrt{2\mu^3\varepsilon}$ $(V - объем, в который заключена система, <math>T = T_0, T_0+1$ и $T' = T'_0, T'_0+1).$

Из принципа детального равновесия следует, что

$$P(A \to B)G_A = P(B \to A)G_B$$

Вероятность перехода $B \to A$ в 1 ед. времени может быть представлена в виде

$$P(B \to A) = V^{-1} \sqrt{\frac{2\varepsilon}{\mu}} \, \sigma_j^{\rm obp}(\varepsilon) \, \frac{\omega(m; E, T)}{\omega(m, E)} \, f_{B,A}^2(T' \to T),$$

где $f_{B,A}^2(T' \to T)$ — доля состояний $|m; E, T\rangle$, обусловленных взаимодействием налетающего нуклона со состояниями $|m-1; U, T'\rangle$. В итоге для скорости распада состояний $|m; E, T\rangle$ получаем

$$\lambda_j(m;\varepsilon,E,T) = \sum_{T'} P(A \to B) = \frac{2s+1}{\pi^2 \hbar^3} \mu \varepsilon \sigma_j^{\rm obp}(\varepsilon) \sum_{T'} \frac{\omega(m-1;U,T')}{\omega(m,E)} f_{B,A}^2(T' \to T).$$

При распаде $T_{<}$ -состояний ($T = T_0$) эта формула приближенно сводится к стандартному выражению для скорости нуклонного распада, так как

$$\omega(m-1;U,T_0') \gg \omega(m-1;U,T_0'+1) \quad \text{и} \quad f_{B,A}^2(T_0'\to T_0) \thickapprox 1.$$

Аналогичная ситуация имеет место при протонном распаде $T_>$ -состояний. При нейтронном распаде в $T_<$ -канале доступны только $T' = T'_0 + 1$ ($T'_<$) состояния конечного ядра, как для прямых, так и для обратных переходов, при этом $f^2_{B,A}(T'_0 \to T_0 + 1) \approx 1$ и

$$\lambda_j(m;\varepsilon,E,T_0+1) = \frac{2s+1}{\pi^2\hbar^3} \, \mu \varepsilon \sigma_j^{\rm obp}(\varepsilon) \, \frac{\omega(m-1;U,T_0'+1)}{\omega(m,E)}.$$

Плотность $T'_{<}$ -состояний конечного ядра может быть аппроксимирована выражением

$$\omega(m-1; U, T'_0+1) \approx \omega(m-1; U-E^{(1)}_{T'_0+1}),$$

где $E_{T'_0+1}^{(1)}$ — энергия первого возбужденного уровня с изоспином T'_0+1 в конечном ядре.

На рисунках красной линией показан вклад $T_>$ -компоненты реакции (γ, p) , синей линией — $T_<$ -компоненты.

2. Эмиссия нуклонов из ГДР

В оболочечной модели ГДР трактуется, как когерентная суперпозиция 1p1h-состояний $|\alpha^{-1}\beta\rangle$, где $|\beta\rangle = \sum_{lj\in\beta} c_{lj}^2 |Nljm\rangle$ — одночастичное состояние с определенной проекцией углового момента на ось симметрии ядра (например, в потенциале Нильссона).

Скорость распада ГДР при энергии *E* с вылетом из ядра нуклона с энергией *є* может быть представлена в виде

$$\lambda_{\mathrm{дип}}(E,\varepsilon) = \sum_{\alpha^{-1}\beta} P_{\alpha^{-1}\beta} \sum_{lj\in\beta} c_{lj}^2 \,\lambda(\alpha^{-1}\beta; E,\varepsilon ljm),$$

где $P_{\alpha^{-1}\beta}$ — вероятность *E*1-возбуждения конфигурации $\alpha^{-1}\beta$,

$$\lambda(\alpha^{-1}\beta; E, \varepsilon ljm) = \frac{2s+1}{\pi^2\hbar^3} \mu \varepsilon \sigma_{ljm}^{\rm obp}(\varepsilon) \frac{\omega(\alpha^{-1}, U)}{\omega(\alpha^{-1}, ljm; E)}$$

— скорость распада конфигурации $|\alpha^{-1}\beta; E\rangle$ с испусканием εljm -нуклона,

$$\begin{split} \sigma_{ljm}^{\text{odp}}(\varepsilon) &= \frac{1}{2} \pi \lambda^2 T_{lj}(\varepsilon) - \text{сечение поглощения } \varepsilon ljm\text{-нуклона,} \\ \omega(\alpha^{-1}, U) &= \frac{1}{2} \left[\arctan \frac{2(\varepsilon_F - U)}{\Gamma_{\alpha}} + \arctan \frac{2U_{\alpha}}{\Gamma_{\alpha}} \right]^{-1} \frac{\Gamma_{\alpha}}{U - U_{\alpha}^2 + \frac{1}{4}\Gamma_{\alpha}^2} \\ - \text{плотность распределения дырки } \alpha^{-1} \left(U = E - B_{\text{пор}} - \varepsilon - \text{энергия конечного состояния} \right), \end{split}$$

$$\omega(\alpha^{-1}, ljm; E) = \int_0^{E-B_{\rm nop}} \omega_{ljm}(\varepsilon) \,\omega(\alpha^{-1}, E - B_{\rm nop} - \varepsilon) \,d\varepsilon$$

— полная плотность ядерных конфигураций $|\alpha^{-1}, ljm\rangle$ при энергии $E, \omega_{ljm}(\varepsilon)$ — полная плотность ljm-состояний, на которые может захватываться нуклон с энергией ε .

Для каждого ядра плотности одночастичных уровней $\omega_{ljm}(\varepsilon)$ аппроксимировались соответствующими константами b_{lj} .

Черные кривые — фактор структуры учтен, синие — нет, красные — $T_>$ -компонента.

Выводы

- Чтобы корректно описать фотонуклонные реакции на средних и тяжелых ядрах, необходимо учитывать изоспиновые эффекты, так как, из-за сохранения изоспина, $T_>$ компонента ГДР распадается преимущественно по протонному каналу.
- Учет структурных особенностей входного дипольного состояния играет существенную роль при описании фоторасщепления протоно-избыточных средних и тяжелых ядер, близких к границе β-стабильности.
- Расчеты показывают, что фотонный канал распада оказывает значительное влияние на процесс испарения нуклонов на заключительной стадии реакции.

Спасибо за внимание!