

Новый подход к анализу и оценке

сечений парциальных и полных фотонейтронных реакций

В.В.Варламов,

Б.С.Ишханов, М.А.Макаров, Н.Н.Песков, В.Н.Орлин, М.Е.Степанов, К.А.Стопани

МГУ имени М.В.Ломоносова Научно-исследовательский институт ядерной физики имени Д.В.Скобельцына

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

1 **Титул**

Проблема достоверности данных о сечениях парциальных фотоядерных реакций – сколь давняя (старая), столь – современная и актуальная.

Новых данных очень мало (практически нет).

Большинство данных по сечениям таких реакций получены давно (1962 – 1987 гг.), включены в справочники, атласы, базы данных, широко используются в разнообразных приложениях.

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 2

Области использования данных о балансе сечений реакций с образованием (прежде всего, 1, 2 и 3) нейтронов.

- конкуренция каналов распада ГДР;
- конкуренция прямых и статистических процессов при распаде ГДР;
- эффекты конфигурационного и изоспинового расщепления ГДР;
- исчерпывание дипольного правила сумм;
- многие другие традиционные;

 мониторинг светимости пучков ультрарелятивистских ядер современных коллайдеров на встречных пучках (регистрируются коррелированные пары нейтронов, возникающих в процессах взаимной электромагнитной диссоциации каждого из сталкивающихся ядер, основной механизм которой - возбуждение и последующий распад по однонейтронному каналу состояний ГДР в каждом из сталкивающихся ядер (однонейтронная реакция (ү,п), на некоторых, специально подобранных ядрах – Au, Pb, In);

• астрофизические проблемы, в частности, образование обойденных р-ядер.

Опубликовано большое количество экспериментальных данных по сечениям парциальных фотонейтронных реакций (большинство получено в Ливерморе (США) и Сакле (Франция) с помощью квазимоноэнергетических аннигиляционных фотонов)

S.S.Dietrich, B.L.Berman. Atlas of Photoneutron cross sections obtained with monoenergetic photon. Atom. Data and Nucl. Data Tables, 38 (1988) 199;

¹³³Cs

«Новый подход к анализу и оценке сечений парциальных и полных фотонейтронных реакций» В.В.Варламов и др., НИИЯФ МГУ

¹⁵⁹Tb

xn-sn-n-2n-3n

2 главных метода разделения фотонейтронов по множественности

Эксперименты с квазимоноэнергетическими аннигиляционными фотонами

Определяется кинетическая энергия нейтронов.

В Ливерморе (США) использовался метод «кольцевых отношений», в котором предполагалось, что отношение чисел зарегистрированных нейтронов во внешнем и внутреннем кольце детекторов является прямой монотонно возрастающей функцией энергии фотонейтронов.

В Сакле (Франция) для измерения энергии фотонейтронов использовался обогащенный гадолинием большой жидкий сцинтиллятор, откалиброванный с помощью источников нейтронов.

Разные методы ведут к систематическим расхождениям результатов разных экспериментов.

07.02.2014

Систематика отношений интегральных сечений реакции (γ,xn) "Все другие/Ливермор" for ~ 500 data sets

(V.V.Varlamov, B.S.Ishkhanov. Study of Consistency Between (γ, xn), [(γ, 1n) + (γ, 1n1p)] and (γ, 2n) Reaction Cross Sections Using Data Systematics. Vienna, Austria. INDC(CCP) - 433, 2002)

n - 2n – Рис.

Очень простой и прозрачный (по определению) смысл объективного абсолютного критерия надежности и достоверности данных.

Функция
$$F_2 = \sigma(\gamma, 2n) / \sigma(\gamma, xn) = \frac{\sigma(\gamma, 2n)}{\sigma(\gamma, n) + 2\sigma(\gamma, 2n) + 3\sigma(\gamma, 3n)} < 0.50$$

- ни при каких условиях F_2 не может иметь значений, больших 0.50; превышение означает, что разделение нейтронов между сечениями реакций $\sigma(\gamma,n)$ и $\sigma(\gamma,2n)$ выполнено недостоверно;

- F_2 отклоняется от const = 0.50 при малых энергиях в связи с наличием вклада сечения реакции $\sigma(\gamma, n)$;

- F₂ отклоняется от const = 0.50 при больших энергиях (E > B3n) в связи с появлением вклада 3σ(γ,3n).

07.02.2014

9 **F2**

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 10 **F2-Sn**

Дополнительными критериями достоверности данных могут служить функции $F_1 = \sigma(\gamma,n)/\sigma(\gamma,xn) < 1.0, F_3 = \sigma(\gamma,3n)/\sigma(\gamma,xn) < 0.33$, $F_4 = \sigma(\gamma,4n)/\sigma(\gamma,xn) < 0.25$, $F_5 = \sigma(\gamma,5n)/\sigma(\gamma,xn) < 0.20$,...

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 11

Tb-Sn-Ta

⁹¹Zr

⁹⁴Zr

F., отн. ед

1.0

0,5

0.0

-0.5

0.0

0,5

0.0

F., отн. ед.

F, отн. ед.

10

10

10

188**O**S

189**O**S

30

Другие очевидные расхождения

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

12 n - 2n – Рис.

Новый экспериментально-теоретический подход к оценке сечений парциальных фотонейтронных реакций σ(γ,n), σ(γ,2n), σ(γ,3n), ...:

• только экспериментальное сечение реакции полного выхода нейтронов σ^{эксп}(γ,хп), априори свободное от ограничений методов разделения нейтронов по множественности, используется как исходное;

• для определения вкладов в сечение полной реакции $\sigma^{3\kappa cn}(\gamma, xn)$ сечений парциальных реакций $\sigma^{oueh}(\gamma, 2n)$ и $\sigma^{oueh}(\gamma, 2n)$ - описания конкуренции каналов распада ГДР – используются переходные функции множественности F_1 , 2, 3, ..., рассчитанные в рамках современной модели фотоядерных реакций.

07.02.2014

Оценка сечений парциальных реакций в рамках экспериментально-теоретического подхода

$$\begin{split} \mathbf{F}_{1}^{\text{reop}} &= \sigma^{\text{reop}}(\gamma, \mathbf{n}) \ / \ \sigma^{\text{reop}}(\gamma, \mathbf{xn}), \\ \mathbf{F}_{2}^{\text{reop}} &= \sigma^{\text{reop}}(\gamma, 2\mathbf{n}) \ / \ \sigma^{\text{reop}}(\gamma, \mathbf{xn}), \\ \mathbf{F}_{3}^{\text{reop}} &= \sigma^{\text{reop}}(\gamma, 3\mathbf{n}) \ / \ \sigma^{\text{reop}}(\gamma, \mathbf{xn}), \end{split}$$

Оцененные сечения парциальных реакций σ(γ,n), σ(γ,2n), и σ(γ,3n), соотносятся между собой согласно положениям модели

σ^{οцен}(γ,n) = F₁^{teop} σ^{эκсп}(γ,xn), σ^{οцен}(γ,2n) = F₂^{teop} σ^{эκсп}(γ,xn), σ^{οцен}(γ,3n) = F₃^{teop} σ^{эκсп}(γ,xn),....

Сумма оцененных сечений парциальных реакций $\sigma^{oueh}(\gamma,n) + 2\sigma^{oueh}(\gamma,2n) + 3\sigma^{oueh}(\gamma,3n)$ равна экспериментальному сечению реакции полного выхода нейтронов $\sigma^{3\kappa cn}(\gamma,xn)$.

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 14 **Оценка**

Модель

В.С.Ишханов, В.Н.Орлин, ЭЧАЯ, 38 (2007) 460, ЯФ, 71 (2008) 517 **:**

полуклассическая экситонная предравновесная модель фотоядерных реакций, базирующаяся на плотностях ядерных уровней, рассчитанных в модели Ферми-газа, учитывающая эффекты деформации ядра и конфигурационного и изоспинового расщепления ГДР ядра

M.B. Chadwick et al., Phys. Rev. C 44, 814 (1991).

07.02.2014

Теория

Боровское описание сечения $\sigma(\gamma, lpkn)$:

$$\begin{aligned} \sigma(\gamma, lpkn; E_{\gamma}) &= \sum_{i} \sigma_{\Gamma \Box P}^{(i)}(E_{\gamma}) W_{\Gamma \Box P}^{(i)}(l, k, E_{\gamma}) + \\ &+ \sigma_{\mathrm{K} \Box}(E_{\gamma}) W_{\mathrm{K} \Box}(l, k, E_{\gamma}), \end{aligned}$$

 σ^i – одна из 4-х компонент (2 изоспиновые - T_0 and T_0 + 1 и 2 направления колебаний), σ_{GDR} - Лоренцовские линии с $\Gamma^{\downarrow}_{peg} \approx GI(a_0/R_0)[E_{peg} - \Delta(Z, N)\delta_{TT_2}]^2$,

где

 $I(\xi) = \left[1 - 3\xi(1 + \pi^2\xi^2/3)/(1 + \pi^2\xi^2)\right]/(1 + \pi^2\xi^2)$

W – вероятности распада (рекуррентные формулы):

$$\begin{split} W(l,k,E;dp,dn,m) &= \hbar \sum_{\substack{j=n,p \\ \Delta m'=2}} \sum_{\substack{m'=m \\ \Delta m'=2}}^{\bar{m}-2} \frac{D(m',E;dp,dn,m)}{\Gamma^{\uparrow}(E;dp,dn,m')} \times \\ &\times \int_{0}^{E-B_{j}} \lambda_{j}(\varepsilon_{j},E;dp,dn,m') W(l_{j},k_{j},U_{j};dp_{j},dn_{j},m') d\varepsilon_{j} + \\ &+ D(\bar{m},E;dp,dn,m) P(l,k,E;dp,dn), \end{split}$$

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 16

Теория

Модель вполне успешно описывает экспериментальные данные по сечениям реакции выхода нейтронов σ^{эксп}(γ,хп) на средних и тяжелых ядрах

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

22

Данные для ¹¹⁵In:

- существенное расхождение экспериментальных данных Сакле и Ливермора для F₁ и их отличие от теоретических данных;

- физически недостоверные отрицательные значения F₁ для данных Ливермора;

существенное расхождение
экспериментальных данных Сакле и
Ливермора для F₂; физически
недостоверные значения F₂ > 0.50 для
данных Ливермора;

- недостоверные отрицательные значения F3 для данных Ливермора.

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

σ(γ,3n)

Сравнение оцененных и экспериментальных (Сакле, Ливермор) сечений реакций для ядра ¹¹⁵In. *∆о*, мбн Квадраты - $[\sigma^{3\kappa c \pi}(\gamma, n) - \sigma^{oueh}(\gamma, n)]$ Кружки - $[\sigma^{\text{оцен}}(\gamma, 2n) - \sigma^{\text{эксп}}(\gamma, 2n)]$ E, МэВdo, мбн E. MaB Квадраты - $[\sigma^{3\kappa cn}(\gamma, 2n) - \sigma^{oueh}(\gamma, 2n)]$ Кружки - $[\sigma^{оцен}(\gamma, 3n) - \sigma^{эксп}(\gamma, 3n)]$ 820 830 «Гигантский дипольный резонанс. Результаты и перспективы» 24 6 февраля 2014 года, НИИЯФ МГУ

Расхождения

Соответствие (практически – совпадение) разностей

 $[\sigma^{_{\mathfrak{I}\mathsf{KCH}}}(\gamma,n)$ - $\sigma^{_{\mathfrak{O}\mathfrak{U}\mathsf{eH}}}(\gamma,n)]$ и $[\sigma^{_{\mathfrak{O}\mathfrak{U}\mathsf{eH}}}(\gamma,2n)$ - $\sigma^{_{\mathfrak{I}\mathsf{KCH}}}(\gamma,2n)]$

отражает:

- 1) необоснованное изъятие заметной части нейтронов из канала "1n", которое приводит к недостоверному уменьшению сечения реакции σ^{эксп}(γ,n) вплоть до появления к нем физически запрещенных отрицательных значений;
- столь же необоснованное добавление этой части нейтронов к каналу "2n", которое приводит к недостоверному возрастанию сечения реакции σ^{эксп}(γ,2n) вплоть до значений, при которых функция F₂ приобретает физически недостоверные значения < 0.50.

Это означает, что экспериментальное разделение нейтронов между каналами "1n" и "2n" было выполнено с большими систематическими погрешностями, сделавшими полученные результаты недостоверными.

Аналогичное соответствие разностей [σ^{эксп}(γ,2n) - σ^{οцен}(γ,2n)] и [σ^{οцен}(γ,3n) - σ^{эксп}(γ,3n)] свидетельствует от подобном же состоянии дел с разделением каналов "2n" и "3n".

В Сакле использовался обогащенный гадолинием большой жидкий сцинтиллятор. Поскольку образование двух нейтронов в реакции (γ,2n) осуществляется за характерно малое ядерное время, при недостаточно хорошем временном разрешении системы имеется определенная возможность наложения сигналов от слабых сигналов друг на друга, которое очевидно должно приводить к занижению вклада канала «2n».

Цитата из B.L.Berman and S.C.Fultz, Rev.Mod.Phys., 47, 713 (1975): "The Saclay detector ... suffered from a high background rate, made up largely of 1n-events, which introduced larger uncertainties in the background subtraction and pile-up corrections"

В Ливерморе использовался метод «кольцевых отношений» (концентрические кольца счетчиков в парафиновом замедлителе): нейтроны малых энергий (из реакции (γ,2n)) должны успеть замедлиться до тепловой энергии захвата *BF*3-счетчиком на пути до внутреннего кольца, а нейтроны больших энергий (из реакции (γ,n)) должны это кольцо проскочить и замедлиться на пути к внешнему кольцу.

Однако, поскольку путь быстрого нейтрона в замедлителе не обязательно будет прямолинейным, возможно, что быстрый нейтрон, пройдя криволинейный путь, вернется к внутреннему кольцу, что очевидно приведет

к завышению вклада канала «2n».

07.02.2014

Систематические погрешности в определении множественности нейтронов (недостоверность распределения нейтронов по каналам "1n", "2n" и "3n") явно зависят от энергии фотонов, а следовательно, от спектров испускаемых нейтронов.

Как показывают теоретические расчеты (например, Б.С. Ишханов, В.Н. Орлин, С.Ю. Трощиев, ЯФ 75, 283 (2012), различия спектров нейтронов в областях энергий ниже и выше порога B2n не столь велики – основные максимумы спектров располагаются при близких и относительно малых энергиях ~ 0.5 – 1.0 МэВ..

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 27 **n - 2n – Рис.**

Это не соответствует тому основному предположению, лежащему в основе обеих методик разделения нейтронов по множественности, что единственный нейтрон из реакции (γ,n) имеет энергию, большую, чем каждый нейтрон из реакции (γ,2n). Связь кинетической энергии нейтрона с его множественностью не является столь простой и прямой.

Дополнительно эта связи осложняется присутствием протонов в нейтронных каналах: в реакции (γ,n) после испускания единственного нейтрона и в реакциях (γ,2n) и (γ,3n) после испускания первого нейтрона образуется одно и то же ядро. Более того, то же ядро образуется и в реакции (γ,np), роль которой в обсуждаемых экспериментах не рассматривалась.

07.02.2014

28 **n - 2n – Рис.**

ОСНОВНЫЕ ВЫВОДЫ:

Практически все исследованные с помощью объективных критериев случаи (⁸⁹Y, ^{90,92,94}Zr, ¹¹⁵In, ^{112,114,116,117,118,119,120,122,124}Sn, ¹⁵⁹Tb, ¹⁶⁵Ho, ^{186,188,190,192}Os, ¹⁹⁷Au, ¹⁸¹Ta, ²⁰⁸Pb, ²⁰⁹Bi) экспериментального разделения фотонейтронов по множественности свидетельствуют о том, что оно выполнено с большими систематическими погрешностями, а полученные данные не являются достоверными.

Основная причина систематических погрешностей - сложная неоднозначная связь множественности нейтронов с их измеряемой экспериментально кинетической энергией.

Имеющиеся данные о сечениях парциальных фотонейтронных реакций должны быть заново проанализированы и оценены.

Для достоверного экспериментального определения сечений парциальных реакций необходимо использование прямых методов их исследования – регистрации наведенной активности или вылетающих нейтронов в режиме совпадений.

Предложенный экспериментально-теоретический метод оценки сечений парциальных реакций, основанный на совместном использовании сечения реакции выхода нейтронов (γ,xn) и соотношений комбинированной модели фотоядерных реакций, дает результаты, согласующиеся с данными, получаемыми с помощью метода наведенной активности.

07.02.2014

ВАЖНЫЕ ФИЗИЧЕСКИЕ СЛЕДСТВИЯ

1. В связи с тем, что в области энергий выше порога B2n реакции (γ,2n) сечения реакции (γ,n), полученные в Ливерморе, быстро спадают, а сечения, полученные в Сакле, имеют ярко выраженный «хвост», в работе R.L.Bergere et.al., Nucl.Phys., A121 (1968) 463 было высказано предположение о том, что этот «хвост» обусловлен вкладом «прямых» процессов, который для многих ядер был оценен в 20 – 30 %. Проведенные исследования показывают, что этот «хвост» обусловлен необоснованным

завышением вклада «1n» распадов, а следовательно оценка доли прямых процессов должна быть пересмотрена (существенно уменьшена).

- 2. Занижение «хвоста» сечений реакции (у,п) в Ливерморе и его завышение в Сакле приводят к искажениям оценок ширины ГДР.
- 3. В большинстве экспериментов для оценки сечения фотопоглощения на средних и тяжелых ядрах используется соотношение $\sigma(\gamma, abs) \approx \sigma(\gamma, Sn) = \sigma(\gamma, xn) - \sigma(\gamma, 2n)$. Провеленные показывают, $\sigma(\gamma, 2n)$ исследования что, поскольку величина систематически занижена в Сакле и завышена в Ливерморе, оценки исчерпывания этих экспериментов искажены. результатам **ДИПОЛЬНОГО** правила сумм по Предложенное для описания завышенных оценок $\sigma^{int}(\gamma, abs) \approx (1.3 - 1.5)$ 60 NZ/A за счет действия обменных увеличение эффективной массы нуклона сил представляется необоснованным.

30

Спасибо за внимание !

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 31 Спасибо!

07.02.2014

6 февраля 2014 года, НИИЯФ МГУ

32

Систематика расхождений сечений реакций (ү,n) и (ү,2n) в Сакле и Ливерморе

(⁵¹V, ⁷⁵As, ⁸⁹Y, ⁹⁰Zr, ¹¹⁵In, ^{116,117,118,120,124}Sn, ¹²⁷I, ¹³³Cs, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁸¹Ta, ¹⁹⁷Au, ²⁰⁸Pb, ²³²Th, ²³⁸U)

позволяет говорить о возможных общих причинах.

И в Сакле и в Ливерморе множественность нейтронов определялась по их кинетической энергии на основе предположения о том, что оба нейтрона в канале "2n" имеют энергии меньше, чем один нейтрон в канале "1n", однако в Сакле количество нейтронов малых энергий оказалось заниженным, а в Ливерморе – напротив, завышенным.

Такие расхождения должны быть связаны со способом регистрации нейтронов разных энергий.

07.02.2014

34 **n - 2n – Рис.**

Результаты исследований с использованием объективных критериев достоверности данных по сечениям парциальных фотонейтронных реакций на 15 ядрах (⁹⁰Zr, ¹¹⁵In,¹⁵⁹Tb, ¹⁸¹Ta, ^{112,114,116,117,118,119,120,122,124}Sn, ¹⁹⁷Au, ²⁰⁸Pb) свидетельствуют о том, что:

• в Сакле для всех ядер кроме ²⁰⁸Pb в согласии с поведением функций $F_{1,2,3}$ экспериментальные сечения реакции (ү,n) являются завышенными, а реакции (ү,2n) - заниженными; для ²⁰⁸Pb наблюдается достоверное соотношение сечений парциальных реакций;

• в Ливерморе для всех ядер кроме ¹⁸¹Та в согласии с поведением функций $F_{1,2,3}$ экспериментальные сечения реакции (γ ,2n) являются завышенными, а реакции (γ ,n) - заниженными; для ¹⁸¹Та наблюдается одновременное слабое (5 %) занижение сечения реакции (γ ,2n) и очень сильное (25 %) занижение сечения реакции (γ ,n);

• для ядра ¹⁸¹Та оцененные в рамках предложенного экспериментальнотеоретического подхода данные расходятся с недостоверными ($F_2 < 0.5$) данными, полученными с помощью разделения нейтронов между каналами "1n" и "2n" по множественности, и согласуются с данными, полученными с помощью метода наведенной активности.

В случаях ядер, исследованных ранее (90 Zr, 115 In, 159 Tb, 112,114,116,117,118,119,120,122,124 Sn, 197 Au) причиной физически недостоверного поведения функции F₂ > 0.5 в случаях с данными Ливермора является необоснованное завышение сечений реакции (γ ,2n): $\sigma(\gamma,2n)$ – недостоверное, а следовательно, и $\sigma(\gamma,n)$ - недостоверное. В случае 181 Ta ситуация иная: $\sigma(\gamma,2n)$ – достоверное, но $\sigma(\gamma,n)$ – «очень (!) плохое».

Ситуация с данными для ядра ¹⁸¹Та существенно осложняет проблему достоверности экспериментальных данных.

При этом для всех указанных ядер данные Сакле и для σ(γ,п) и для σ(γ,2п) – недостоверные!

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

36

Отношения интегральных сечений σ^{инт} полных и парциальных реакций, рассчитанных до энергии Е^{инт} = 25 МэВ

по оцененным данным и экспериментальным данным Сакле и Ливермора

Реакция	о ^{инт} оцен/о ^{инт} Сакле	о ^{инт} оцен/о ^{инт} Ливермор	
(γ,xn)	1	1.25 (3813.8/3068.3)	
(γ ,sn)	0.96 (2867.3/2998.4)	1.30 (2867.3/2199.7)	
(γ,n)	0.88 (1922.4/2189.5)	1.46 (1922.4/1315.7)	
(γ,2n)	1.16 (929.1/797.9)	1.05 (929.1/887.0)	

Переходы (ү,хп) \rightarrow (ү,sn) \rightarrow (ү,n) сопровождаются возрастанием доли «плохого» сечения реакции (ү,n):

 $1.24 \rightarrow 1.30 \rightarrow 1.46$!

В последующем переходе (γ ,n) \rightarrow (γ ,2n) - 1.05.

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 37

Та –таблица

n-2n-3n

Независимый эксперимент с помощью метода наведенной активности

(E.Wolynec, M.N.Martins. Discrepancies between Saclay and Livermore photoneutron cross sections.

Revista Brasileira Fisica, 17 (1987) 56)

 $\sigma(e,2n) = \frac{1}{2}(\sigma(e,xn) - \sigma(e,n)),$

σ(e,xn) определено с помощью регистрации нейтронов,

σ(e,n) - наведенной активности (Ge-Li, распад ¹⁸⁰Ta, 93.3 кэВ).

Независимый эксперимент: сечения реакции (γ,2n) в Сакле занижены -> метод коррекции – согласования:

сечение полной фотонейтронной реакции в области энергий ГДР $(\gamma, xn) = (\gamma, n) + 2(\gamma, 2n);$

отношение R ("Сакле/Ливермор" нормировка) для сечений всех реакций

$$\mathbf{R} = \sigma_{S}^{n} \sigma_{L}^{n} = \sigma_{S}^{n} \sigma_{L}^{n} = \sigma_{S}^{2n} \sigma_{L}^{2n} = (\sigma_{S}^{n} + 2\sigma_{S}^{2n})/(\sigma_{L}^{n} + 2\sigma_{L}^{2n}),$$

$$\sigma_{S}^{n} = (\sigma_{S}^{n} + 2\sigma_{S}^{2n}) = \mathbf{R} \sigma_{L}^{n} = \mathbf{R} (\sigma_{L}^{n} + 2\sigma_{L}^{2n});$$

скорректированное сечение Сакле $\sigma^{2n}{}_{8}^{*}$ должно совпадать со

скорректированным сечением Ливермора ($\sigma_{L}^{2n}^{*} = \mathbf{R}\sigma_{L}^{2n}$):

$$\sigma_{L}^{2n} = \sigma_{S}^{2n} = R\sigma_{L}^{2n} = \sigma_{S}^{2n} + 1/2(\sigma_{S}^{n} - R\sigma_{L}^{n}).$$

Суть: часть сечения реакции (ү,п) перемещается "возвращается" в сечение реакции (ү,2п).

07.02.2014

41 **``n-2n″ - метод**

Такой метод далеко не всегда может использоваться (конечные ядра - стабильные или неудобные)

Реакции на ядрах тантала и золота различаются легко :

¹⁸¹Та(
$$\gamma$$
,n)¹⁸⁰Та, Т_{1/2} = 8.154 час, E = 93.326 кэВ
E = 103.557 кэВ

¹⁸¹Та(γ ,2n)¹⁸⁰Та, Т_{1/2} = 1.82 год, Е = 63.0 кэВ

¹⁹⁷Au(γ ,n)¹⁹⁶Au, T_{1/2} = 6.1669 дн, E = 93.326 кэВ E = 103.557 кэВ

¹⁹⁷Au(γ ,2n)¹⁹⁶Au, T_{1/2} = 186.098 дн, E = 98.85 кэВ

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 42

6 февраля 2014 года, НИИЯФ МГУ

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 44 (ү,**п) – (**ү**,2п) коррекция**

¹⁵⁹Тb – сближение данных Сакле с данными Ливермора

"До" и "после"

Независимая проверка - эксперимент по исследованию ГДР методом наведенной активности:

идентифицируется не вылетающий нейтрон, а конечное ядро

Ho-Ta-Pb

Очевидные ошибки в разделении нейтронов по множественности

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 48

Данные Ливермора: поведение «нефизическое», заметная переопределенность сечения $\sigma(\gamma, 2n)$ и, соответственно – недоопреденность сечения $\sigma(\gamma, n)$.

При Е > 25.5 МэВ, $F_2^{3\kappa cn}$ (Е) попадает в «нефизическую» область, достигая значения $F_2 = 2.0$ (сечение реакции $\sigma(\gamma,2n)$ вдвое превышает сечение реакции $\sigma(\gamma,xn)!$) - поскольку сечение реакции $\sigma(\gamma,3n)$ в Ливерморе вообще не было определено, все нейтроны из реакции ($\gamma,3n$) были ошибочно приписаны реакции ($\gamma,2n$.

Данные Сакле: поведение «физическое», но – заметная недоопределенность сечения $\sigma(\gamma,2n)$ и, соответственно – переопреденность сечения $\sigma(\gamma,n)$.

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

«Правильное» сечение реакции (γ,3n), оцененное по «неправильным» переопределенным (неоправданно завышенным) данным для сечения реакции (γ,2n)

 $2\sigma^{_{\mathsf{JKCII}}}(\gamma,2n) = \sigma^{_{\mathsf{OUCH}}}(\gamma,n) + 2\sigma^{_{\mathsf{OUCH}}}(\gamma,2n) + 3\sigma^{_{\mathsf{OUCH}}}(\gamma,3n),$

$$σ^{\text{οцен}}_{\Pi}(\gamma,3n) = 2/3[\sigma^{3\kappa cn}_{\Pi}(\gamma,2n) - \sigma^{\text{οцен}}(\gamma,2n)] - 1/3 \sigma^{\text{οцен}}(\gamma,n)$$

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ

Сравнение оцененных и экспериментальных (Сакле, Ливермор) сечений реакций для ядра ¹⁵⁹Tb.

> Расхождения – большие, необходима независимая проверка.

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 51

Реакция	Центр тяжести Е ^{ц.т.} , МэВ	Интегральное сечение σ ^{инт} , МэВ∙мбн	Интегральное сечение σ ^{инт} , МэВ∙мбн	Центр тяжести Е ^{ц.т.} , МэВ	^α σ ^{инτ} (γ,2n)/σ ^{инτ} (γ,n)
	Оцененны	ые данные	Данны	е Сакле	уменьшилось на 27 %.
(γ , xn) *)	16.84	3200	3200	16.84	
(y,sn)	15.78	2383	2557		Уменьшение на 9 %!
(γ,n)	14.04	1642 <	1950	14.6	Уменьшение на 19 %!
(γ ,2 n)	19.04	714	610	19.9	Рост на 15 %!
(γ ,3n)	26.29	26	16	26.8	

*) Исходные экспериментальные данные Сакле.

07.02.2014

«Гигантский дипольный резонанс. Результаты и перспективы» 6 февраля 2014 года, НИИЯФ МГУ 52