Магистерская диссертация Анализ заряда струй в рр соударениях на Большом адронном коллайдере

Выполнил студент

213М группы

Кочергин И.А.

Научный руководитель:

д.ф-м.н. проф. Смирнова Л.Н.

Москва. 2020 год.

Анализ взвешенного заряда струй, содержащих *b*кварки, в зависимости от метода определения струи и метода вычисления электрического заряда струи путем программного моделирования с помощью Монте-Карло генератора РҮТНІА 8.2

Фрагментация, образование струй

Фундаментальной величиной является функция фрагментации $D_p^h(z, E)$, которая описывает вероятность нахождения адрона h с энергетической долей z партона p, имеющего энергию E.

$$\zeta = p_T^{particle} / p_T^{jet}$$

Через эволюцию ДГЛАП (DGLAP) можно рассчитать зависимость многих наблюдаемых от p_T [2]. В частности,

$$u \frac{\partial}{\partial \mu} D_p^h(\zeta, \mu) = \sum_{p'} \int_{\zeta}^1 \frac{\partial \zeta'}{\zeta'} \frac{\alpha_s(\mu) P_{p' \leftarrow p}(\zeta', \mu)}{\pi} D_{p'}^h\left(\frac{\zeta}{\zeta'}, \mu\right)$$

где $P_{p' \leftarrow p}(\zeta', \mu)$ – функция расщепления Докшицера-Грибова-Липатова-Алтарелли-Паризи, а масштаб μ определяется через α_s .

Модель струны Лунда

 Сильное взаимодействие, то есть глюонный обмен между кварками, представить в виде струны, концами которой являются кварки

 Сила натяжения постоянна, а потенциальная энергия линейно возрастает:

$$F(r) \approx const = k \approx 1 \ Gev/fm \iff V(r) \approx kr$$

 Получается простое описание как 1+1 мерного объекта – струна без поперечных возбуждений с лоренц-ковариантным формализмом.

Процесс разрыва струны соответствует процессу рождения кварк-антикварковой пары Выделение струй, anti-k_т алгоритм, электрический заряд струи

расстояние между частицами
 1 1 Л::²

$$d_{ij} = \min(\frac{1}{p_{Ti}}, \frac{1}{p_{Tj}})\frac{\Delta_{lj}}{R^2}$$

параметр R определяет масштаб струи

•
$$\Delta_{1j}^{2} = (y_1 - y_j)^2 + (\phi_1 - \phi_j)^2$$
, где у – быстрота частицы, а ϕ – азимутальный угол.

Заряд струи:

$$Q_J = \frac{1}{\left(p_{T_J}\right)^k} \sum_{i \in Tracks} q_i \times (p_{T,i})^k$$

 q_i – электрический заряд (в единицах заряда позитрона) трека i с соответствующим поперечным импульсом $p_{T,i}$, k – свободный параметр регуляризации, p_{T_I} – поперечный импульс струи.

Струи в эксперименте ATLAS

Распределения заряда струй от легких ароматов на уровне детектора полученных при измерении и при моделировании при значениях 50 GeV < $p_T < 100$ GeV, $\sqrt{s} = 8$ TeV, параметр регуляризации k = 0.3 (слева) и k = 0.7 (справа)

PaGota [4] [[The ATLAS Collaboration, Measurement of jet charge in dijet events from $\sqrt{s} = 8 TeV$ pp collisions with the ATLAS detector // Physical Review D 93, 052003 (2016), CERN-PH-EP-2015-207]

Распределение среднего заряда струи в зависимости от поперечного импульса для разных значений k=0.3,0.5,0.7 для (слева) более передних струй и (справа) более центральных струй Работа [4]

PaGota [2] [The ATLAS Collaboration, Properties of jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at $\sqrt{s} = 13 TeV$ // Phys. Rev. D100(2019)052011. CERN-EP-2019-090 24th June 2019]

0.4

Распределение заряда оппозитных струй для кандидатов в B⁺ и B⁻ сигналы, $k = 1.1, p_T > 2.5 \text{ GeV}, |\eta| < 2.5, R = 0.8, \sqrt{s} = 8 \text{ TeV}$

PaGota [7] [The ATLAS Collaboration, Measurement of the CP-violating phase $φ_s$ and the B_s^0 meson decay width difference with $B_s^0 → J/ψφ$ decays in ATLAS // JHEP 08 (2016) 147, CERN-PH-2015-166 6th September 2016]

b-кварк

кварк								
или	b	\overline{b}	B^+	B^{-}	B^0	$\overline{B^0}$	B_s^0	$\overline{B_s^0}$
мезон								
заряд	$-\frac{1}{3}$	$+\frac{1}{3}$	+1	-1	0	0	0	0
состав	-	-	$u\overline{b}$	$b \overline{u}$	$d\overline{b}$	$b \bar{d}$	$s\overline{b}$	bs

Моделирование

Монте-Карло генератор РҮТНІА 8.2, настройки:

- $\sqrt{s} = 8 TeV$
- 100 млн соударений
- учет жестких процессов КХД:
 - $gg \rightarrow gg$
 - $gg \rightarrow q\overline{q}$
 - $qg \rightarrow qg$
 - $qq' \rightarrow qq'$ и другие
- учет мягких процессов КХД
 - упругое рассеяние $AB \rightarrow AB$
 - однократное дифракционное рассеяние $AB \rightarrow XB$
 - двухвершинное дифракционное рассеяние $AB \rightarrow X_1 X_2$
 - двойной померонный обмен $AB \rightarrow AXB$

Отбор частиц.

Для всех частиц:

• $p_T > 0.5 \ GeV$

Центральная, образующая частица:

- В-мезон
- *τ* > 3 nsec (исключая резонансы)
- ▶ p_T > 10 ГэВ

Выбирается последний В-мезон из цепочки

amount

Струи, содержащие В-мезон. Основные характеристики. Количество частиц.

Распределения по быстроте у и поперечному импульсу рт

Распределения детектируемых частиц в струях по поперечному импульсу р_т, среднее 1.537

Распределения В-мезонов в струях по поперечному импульсу

Распределение струй по поперечному импульсу струи

14

Распределения взвешенного заряда. Вариации:

- 1. Отбора и учета частиц:
 - все частицы ($p_T > 0.5 \ GeV, \tau > 3 \ nsec$)
 - только заряженные частицы ($p_T > 0.5 \ GeV$, $\tau > 3 \ nsec$, $e_{particle} \neq 0$)
 - только детектируемые частицы ($p, \bar{p}, n, \bar{n}, e^+, e^-, \pi^+, \pi^-, \mu^+, \mu^-, K^+, K^-$)

2. Типа образующего (характерного) В-мезона в струе:

- $\blacksquare B^+, B^-, B^0, \overline{B^0}, B^0_s, \overline{B^0_s}$
- 3. Регуляризационного параметра
 - $k = \{0.3, 0.5, 0.7, 1.1\}$
- 4. Радиуса струи
 - $\blacksquare R = \{0.1, 0.3, 0.5, 0.7, 0.8, 1.0\}$

Сравним с экспериментом – измерением работы [7]

Распределения зарядов струй с В⁻мезонами (слева), с В⁺ мезонами (справа), при $\sqrt{s} = 8 TeV$, $p_T > 0.5 GeV$, k = 1.1, R = 0.8, detect level

Распределения струй, компенсирующих b и \overline{b} кварки в работе [7] – по центру.

Средние значения заряда струй, выделенных таким образом из моделированных событий:

- $C B^+ \rightarrow Q_{Jet} = 0.19$
- $C B^- \rightarrow Q_{Jet} = -0.20$

Средние значения заряда компенсирующих струй, измеренных в работе [7]:

- компенсирующих $b \rightarrow -Q_{Jet} = 0.15$
- компенсирующих $\bar{b} \rightarrow -Q_{Jet} = -0.12$

Можно предположить, что результаты измерений в работе [7] образованы симметричными частями от *B*⁺ и *B*⁻ мезонов, и общей частью, вероятно – глюонной компонентой и струями с нейтральными В-мезонами. Аналогично рассмотрим и результаты моделирования.

Считая $\frac{f_s}{f_d} \cong \frac{f_s}{f_u}$, вследствие примерного равенства масс кварков и и d, получаем ожидаемое значение заряда струй от b и \overline{b} кварков.

Результаты близки, практически совпадают.

	из моделированных данных	из экспериментальных	из теоретической оценки на основе IX коэффициента	
		данных	фрагментации <u>fs</u>	
средний заряд				
струй от b кварков	-0.49	-0.46	-0.47	
(с <i>В</i> - мезонами)				
средний заряд				
струй от $ar{b}$ кварков	0.49	0.48	0.47	
(с B ⁺ мезонами)				

Зависимость среднего заряда струй от радиуса струи R

Зависимость среднего заряда струй от радиуса струи R

Зависимость среднего заряда струй от радиуса струи R

Параметр регуляризации отвечает за чувствительность струй к мягкому излучению.

Зависимость среднего заряда струи, содержащей B^+ мезон (слева) и B^- мезон (справа), от коэффициента регуляризации k, для отбора заряженных частиц, $\sqrt{s} = 8$ ТэВ, $p_T > 0.5$ ГэВ, $\tau > 3$ nsec, R = 0.7. Наклон ~0.4

Представляет интерес оценить средний заряд струй при стремлении радиуса струи к 0

"образующий" струю	B+	B	B^0	$\overline{B^0}$	B_s^0	$\overline{D^0}$	
Me30H $ ightarrow$						D _S	
отбор всех частиц	0.62	-0.62	-0.00	0.01	0.00	0.03	
заряженных частиц	0.81	-0.82	-0.00	-0.00	-0.02	0.03	
детектируемых частиц	0.24	-0.26	0.08	-0.03	0.04	0.06	

21

Заключение

- Выполнено моделирование pp-соударений и набор статистики в 100 млн событий при энергии соударении √s = 8 TeV, реализован метод выделения струй, содержащих В-мезоны, и записи их с возможностью последующей обработки.
- Построены распределения взвешенного заряда струй с различными образующими В-мезонами при вариации критериев отбора, а также параметров струи R и k.
- Построены основные распределения струй по поперечному импульсу, количеству частиц, быстроте.
- Выполнено сравнение результатов моделирования с существующими измерениями и работами.
- Показаны возможности анализа распределений заряда струй с Вмезонами.
- Установлены корреляции между типом В-мезона, типом b или b кварка, и электрическим зарядом струи при определенных параметрах выделения струи и вычисления её заряда, которые могут быть использованы в эксперименте ATLAS при идентификации B⁰_s-мезонов.

Спасибо за внимание!

Упомянутые работы

[2] [The ATLAS Collaboration, Properties of jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at $\sqrt{s} = 13 TeV$ // Phys. Rev. D100(2019)052011. CERN-EP-2019-090 24th June 2019

[4] The ATLAS Collaboration, Measurement of jet charge in dijet events from $\sqrt{s} = 8 TeV pp$ collisions with the ATLAS detector // Physical Review D 93, 052003 (2016), CERN-PH-EP-2015-207

[7] The ATLAS Collaboration, Measurement of the CP-violating phase φ_s and the B_s^0 meson decay width difference with $B_s^0 \rightarrow J/\psi \varphi$ decays in ATLAS // JHEP 08 (2016) 147, CERN-PH-2015-166 6th September 2016

[9] L.N.Smirnova, S.M.Turchikhin, Expected b-production at the LHC // Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics

[10] The ATLAS Collaboration, Determination of the ratio of b-quark fragmentation fractions $f_s/_{f_d}$ in pp-collisions at $\sqrt{s} = 7 TeV$ with the ATLAS detector // CERN-PH-EP-2015-165

Струи с *B*⁺-адронами, количество струй: 3343, отбор всех частиц.

Струи с *B***⁺-адронами**, количество струй: **3343**, отбор **детектируемых** частиц.

Струи с **В⁺-адронами**, количество струй: **3343**, отбор **заряженных** частиц.

