Магистерская диссертация на тему

«Анализ кинематики лептонов и потерянной поперечной энергии в распадах бозона хиггса по данным второго сеанса Большого адронного коллайдера»

Выполнил: Мордовец Иван, группа 213М Научный руководитель: Смирнова Л.Н. и Цукерман И.И.

Содержание

- Введение
- Отбор событий
- VBF E_T^{miss} анализ
 - МЕТ гистограммы
 - Зависимость E_T^{miss} от событий наложения
 - Зависимость средней *E_T^{miss}* от числа взаимодействий (μ)
- Анализ кинематики лептонов
- Заключение

Эксперимент ATLAS

- 3 000 физиков из 182 институтов 38 стран
- Главная цель: бозон Хиггса, проверка Стандартной модели и поиск Новой физики

3

Каналы распада бозона Хиггса СМ

Канал	BR, %	Мода, удобная для
распада		экспериментального наблюдения
$h \rightarrow bb$	57.8 ± 1.9	Рождение в механизмах VH, <u>ttH</u>
$h \rightarrow WW^*$	21.6 ± 0.9	Распад обоих <i>W</i> в лептон и нейтрино
h→gg	8.56 ± 0.86	Очень сложен для наблюдения, нет экспериментальной сигнатуры
$h \rightarrow \tau \tau$	6.30 ± 0.36	Рождение в механизме VBF
$h \rightarrow cc$	2.90 ± 0.35	Очень сложен для наблюдения
$h \rightarrow ZZ^*$	2.67± 0.11	Распад обоих Z в лептоны, идеальная сигнатура
$h \rightarrow \gamma \gamma /$	0.228 ± 0.011	Очень большие фоны, чистая сигнатура
$h \rightarrow Z\gamma$	0.155 ± 0.014	Распад Z в лептоны

I.P. Mordovetc, SM HWW

 $h \rightarrow WW^* \rightarrow \ell v \ell v$: текущий статус

Сила сигнала в единицах СМ по механизмам рождения: $\mu_{ggF} = 1.10^{+0.21}_{-0.20}, \mu_{VBF} = 0.62^{+0.37}_{-0.36}$

 $\sigma_{ggF} = 11.4 \pm 2.2$ пб (10.4 пб) $\sigma_{VBF} = 0.5 \pm 0.3$ пб (0.81 пб) В скобках – сечение в СМ.

Сигнал четко виден в канале $h \rightarrow WW^* \rightarrow \ell v \ell v$ при 13 ТэВ и наблюдаемое число событий соответствует СМ.

Двумерные контуры максимального правдоподобия на 68%-ном и 95%-ном уровнях достоверности для $\sigma_{ggF} \times BR(H \rightarrow WW^*)$ в зависимости от $\sigma_{VBF} \times BR(H \rightarrow WW^*)$ в сравнении с предсказаниями СМ.

Зачем нужно измерять E_T^{miss} в $h \rightarrow WW^* \rightarrow \ell v \ell v$

Из-за наличия двух нейтрино восстановить массу бозона Хиггса в канале распада $h \rightarrow WW^* \rightarrow \ell v \ell v$ не представляется возможным. Но можно измерить т.н. «поперечную массу», которая определяется следующим образом:

$$m_T = \sqrt{(E_T^{ll} + E_T^{miss})^2 - |\mathbf{p}_T^{ll} + E_T^{miss}|^2}$$

где $E_T^{ll} = \sqrt{|\mathbf{p}_T^{ll}|^2 + m_{ll}^2}$

Поперечный импульс пары лептонов, который входит в указанную формулу, восстанавливается с довольно хорошей точностью. Критическим моментом является измерение вектора E_T^{miss} .

В идеальном герметичном детекторе величина модуля E_T^{miss} равна нулю, если в событиях нет частиц, слабо взаимодействующих с веществом установки (нейтрино). В реальном детекторе ATLAS ненулевой вклад в E_T^{miss} может быть связан как с адронными струями, летящими вне аксептанса ($|\eta|$ >4.9), так и с ненулевым энергетическим или импульсным разрешением установки при восстановлении упомянутых «объектов» или неточностью калибровки соответствующих шкал энергий-импульсов.

Цель: сравнить данные и МС

Как измеряется E_T^{miss}

 E_{τ}^{miss} представляет собой векторную сумму поперечных импульсов p_T всех зарегистрированных частиц, взятую с обратным знаком. Вклад в E_T^{miss} дают электроны, мюоны, фотоны, тау-лептоны и адронные струи. Кроме того, есть т.н. мягкая составляющая (soft term), которая ассоциируется ΗИ не C ОДНИМ ИЗ перечисленных «объектов» и требующая специальных алгоритмов для вычисления (по трекам).

7

Сигнал VBF и фоны в конечном состоянии *еvµv*

Сигнал от VBF

Фоны измеряются в кинематических контрольных областях, близких (но ортогональных) к области сигнала, а затем пересчитываются на область сигнала с помощью MC.

Основные фоны:

 $WW^* \rightarrow ev\mu v$ - парное рождение WW^*

ttbar —> WbWb—> *еvµv* + *bb* - рождение пар tор-кварков

Wt—> WWb—> $ev\mu v + b$ - рождение одиночного top-кварка с W-бозоном

 $Z^{(*)} \longrightarrow tt + X \rightarrow em + Y - процесс Дрелла-Яна$

ggF h—> WW*—> *еvµv* - рождение бозона Хиггса в (основном) механизме ggF

> <u>Дополнительный фон:</u> W+jets —> *ev/µv* + fake *e/µ* из струи

Эффект pile-up

Mean Number of Interactions per Crossing

Среднее количество взаимодействий в одном пересечении пучков по годам набора статистики.

В 2017 году в канале *Z*→ µµ было зафиксировано 65 столкновений в одной вершине!

Распределение по $|E_T^{miss}|$ в событиях с двумя и более струями 2017

В области до 100-150 ГэВ наблюдается хорошее согласие данных и МС; при больших величинах $|E_T^{miss}|$ отношение data/SM уменьшается до 0,9 - 0,95

Распределение по $|E_T^{miss}|$ в событиях с двумя и более струями с значением $\mu > 36$

2017

Данные и Монте-Карло моделирование находятся в согласии до 150 ГэВ

Распределение по $|E_T^{miss}|$ в событиях с двумя и более струями после подавления фона от top-кварка

2017

Events / 10 GeV

Data / SM

10⁵

10⁴

10³

10²

10

 E_{T}^{miss} [GeV]

 E_{T}^{miss} [GeV]

Наблюдается интегральный дефицит данных в 5-7%

Распределение по $|E_T^{miss}|$ в событиях с двумя и более струями в контрольной области фона от $Z \rightarrow \tau \tau$ 2017 2018

Удовлетворительное согласие данных и Монте-Карло моделирования

Распределение по $|E_T^{miss}|$ в событиях с двумя и более струями в контрольной области *top*-кварка 2017 (NF applied for Top,Z/y^{*} $\rightarrow \tau \tau$) Plot: "CutVBFTopControl_2jetinclZttVeto/MET2"

Видно, что вклад этого фона на 2 порядка превышает вклад от других процессов, что говорит о правильности выбора данной области

I.P. Mordovetc, SM HWW

Зависимость среднего значения модуля вектора недостающего поперечного импульса от числа взаимодействий µ в Z CR с мюонами в конечном состоянии

MC удовлетворительно описывает реальные данные. Было замечено, что при µ≈50 для данных 2017 г. есть точка перегиба. Это связано с выравниванием светимости на LHC в 2017 г.

Виды E_T^{miss}

Существуют различные способы вычисления E_T^{miss} . Они отличаются по методике вычисления мягкой компоненты (soft term) и по используемому инструментарию.

CST E_T^{miss} . Soft term рассчитывается по энерговыделениям в калориметрах, которые не ассоцируются с жесткими объектами. Используется стандартная методика подавления pile-up (для учета этого эффекта величину CST E_T^{miss} необходимо домножить на специальный коэффициент).

TST E_T^{miss} . Вместо калориметров (как в CST) для подсчета soft term используется информация с трекера. Данный алгоритм работает только в области перекрытия трекера $|\eta| < 2.5$, однако гораздо лучше справляется с подавлением pile-up, чем алгоритм CST. По умолчанию под величиной E_T^{miss} подразумевают именно **TST** E_T^{miss} .

Track E_T^{miss} . При восстановлении вектора недостающего поперечного импульса в этом варианте используется только информация с трекера.

Sig E_T^{miss} . Показывает значимость отличия E_T^{miss} от нуля, с учётом величины реконструированного E_T^{miss} и разрешения импульсов объектов, вошедших в определение E_T^{miss} в данном событии.

Распределение по $|E_T^{miss}|$ Track E_T^{miss} в событиях с электроном и мюоном в конечном состоянии

Наблюдается хорошее согласие данных и МС-моделирования в диапазоне от 0 до 120-150 ГэВ

Распределение значимости E_T^{miss} по сравнению с флуктуациями фона

2017

2018

Удовлетворительное согласие данных и МС

Распределение по поперечному импульсу лидирующего и сублидирующего лептонов в событиях с двумя и более струями после подавления фона от *top*-кварков

Наблюдается небольшой дефицит в данных, который приводит к среднему отношению Data/SM ≈ 0.9-0.92

Распределение по поперечному импульсу лидирующего и сублидирующего лептонов в событиях с двумя и более струями в контрольной области *top*-кварка

Обнаружены некоторые расхождения между данными и МС в контрольной области фона от *top*-кварков. Это расхождение связано с недостатками физического генератора событий с парным рождением *top*-кварков и будет учтено в окончательном анализе данных в ATLAS

Заключение

Изучение распределений по недостающему поперечному импульсу E_T^{miss} и кинематических характеристик лептонов является критически важным моментом для определения «поперечной массы» стандартного бозона Хиггса в канале распада $h \rightarrow WW^* \rightarrow \ell v \ell v$. Они рассматривались как в области сигнала в механизме слияния векторных бозонов (SR), так и в контрольных кинематических областях (CR) для измерения фонов.

Получены следующие результаты:

1) По распределениям E_T^{miss} и производным от нее величинам:

- в SR на начальных стадиях отбора формы распределений по модулю E_T^{miss} отличаются мало и можно говорить об удовлетворительном их согласии в целом;

- в контрольных областях фонов от *top*-кварков и $Z \rightarrow \tau \tau$, спектры неплохо описываются MC;

2) Монте-Карло в целом удовлетворительно описывает эффекты, связанные с pile-up, в частности, рост средней величины недостающего поперечного импульса с числом взаимодействий в одном пересечении пучков, который наиболее заметен в Z CR;

3) Для варианта E_T^{miss} , основанного целиком на трекере, наблюдается лучшее согласие с МС, чем для стандартного варианта, основанного на трекере и калориметрах, включая Z CR, поэтому его целесообразно использовать для отбора событий сигнала в канале $h \rightarrow WW^* \rightarrow \ell v \ell v$, где нижнее ограничение необходимо для подавления фона от процессов Дрелла-Яна. Перспективно также использовать переменную, означающую значимость E_T^{miss} .

4) По кинематике лептонов:

- в SR и top CR большая часть спектров достаточно хорошо воспроизводятся моделированием, расхождения в указанных распределениях связаны с недостатками физического МС-генератора для парного рождения top-кварков.

Благодарю за внимание!