

Электронная пушка для линейного ускорителя непрерывного действия

213М Пак Гитэ

Научный руководитель Юров Дмитрий Сергеевич

- 1. Введение
- 2. Теоретические основы
- 3. Оптимизация электронной пушки
- 4. Заключение
- 5. Литература

- Ускорители частиц используются не только в фундаментальных науках (физика, биология, химия, исследования новых материалов), но и в промышленных областях (медицина, безопасность в аэропортах и т.д.)
- Электронный ускоритель непрерывного действия с энергией 1МэВ и мощностью пучка 175кВт может использоваться в таких областях.

- В прошлом году был разработан проект ускорителя электронов непрерывного действия с энергией пучка 1 МэВ и максимальной мощностью 175 кВт.
- Новый проект ускорителя и параметры:

Энергия пучка	1,02±0,05 МэВ
Максимальная мощность ускоренного пучка	175 кВт
Рабочая частота	2450 МГц
Коэффициент захвата	~ 60%
Выходная мощность клистрона	200 кВт
Мощность СВЧ потерь в стенках ускоряющей структуры	24,1 кВт
Электронный КПД	87,5%
Полный КПД	~40%

- При энергии ускоренного пучка 1 МэВ и мощности 175 кВт, ток пучка на выходе ускорителя должен составлять 175 мА.
- При обеспечении нужных параметров пучка на входе в ускоряющую структуру, коэффициент захвата будет составлять около 60%.
 При коэффициенте захвата 60% ток пушки должен быть 290 мА.

Цель работы : Получить результаты оптимизации электронной пушки с током 290мА и обеспечить сходящийся пучок электронов с энергией 15.5 кэВ на входе в ускоряющую структуру.

- Электронная пушка это устройство, с помощью которого получают пучок электронов с заданной кинетической энергией и заданной конфигурации.
- Электронные пушки могут разделить по способу генерации электронов.

Термоэмиссия

- Электроны испускаются нагревом катода(~1000°С)
- Длительный срок службы
- Низкая скважность
- Присутствие нагревателя

Фотоэмиссия

- Электроны испускаются импульсом мощного лазерного излучения
- Большая яркость пучка
- <u>Невозможность работы</u> с большими плотностями тока <u>при низкой скважности</u>

 Электроны испускаются сильным электрическим полем

Автоэмиссия

- Достижима плотность тока свыше 1000 А/см²
- Импульсные устройства
- Для промышленных ускорителей частиц электронные пушки требуют высокой надежности и должны постоянно работать.

< Принцип работы электронной пушки с термоэмиссией >

Принцип работы

пушки.

- При нагревании катода (более 1000°С) электроны испускаются с катода.
- ② Электроны ускоряются в постоянном электрическом поле.
- Электроны проходят через анод и входят в ускоряющую структуру.
- Фокусирующий электрод влияет на сходимость пучка вблизи катода.
- Управляющий электрод регулирует ток

< Принцип работы электронной пушки с термоэмиссией >

 Максимальная плотность тока эмиссии термокатода может быть рассчитана с использованием закона Ричардсона Дешмана.

$$J_{eT} = AT^2 \exp\left(\frac{-e\varphi}{kT}\right)$$

А : константа Ричардсона(120 А / см²К); Т : температура катода; *k*: постоянная Больцмана *φ* : работа выхода катода

- В реальности поток электронов формирует пространственный заряд, который изменяет распределение потенциала в электронной пушке.
- При росте тока эмиссии электрическое поле вблизи катода падает, в итоге препятствуя дальнейшему увеличению тока.

< Принцип работы электронной пушки с термоэмиссией >

- Ток эмиссии в таком режиме определяется только геометрией пушки и значениями потенциалов электродов. Это называется током в режиме ограничения пространственным зарядом.
- На практике электронные пушки работают в режиме ограничения пространственным зарядом для стабильности тока эмиссии.
- Плотность тока электронной эмиссии может быть рассчитана по закону Ленгмюра.

$$j_{sc} = gU^{3/2}$$

где *g* – постоянная для данной геометрии, называемая первеанс.

< Расчет электронной пушки в CST Studio >

- Разработка и оптимизация электронной пушки проводились с использованием пакета программ CST Studio.
- Модуль E-static Solver(ES) находит значение электростатических полей в каждой ячейке сетки.
- Модуль Particle Tracking Solver (PTS) проводит интегрирование уравнений движения частиц в рассчитанных полях с учетом пространственного заряда.

< Начальные и измененные параметры >

Параметры	Значение
Потенциал катода и фокусирующего электрода	-15.5 кВ
Потенциал анода	0 кВ
Температура катода	1200 °C
Работа выхода	1,8 эВ

Параметры	Значение
Расстояние между катодом и управляющим электродом (L _{e_el})	8,32 ~ 3,42 мм
Напряжения между управляющим электродом и катодом	0 ~ 3 кВ
Радиус анода (<i>R_a</i>)	2,5 ~ 6 мм
Радиус управляющего электрода (R _{el})	2,8 ~ 3,1 мм
Расстояние между управляющим электродом и анодом(<i>L_{el_a}</i>)	4 ~ 10 мм
Длина управляющего электрода (L _{el})	1,5 ~ 4 мм
Длина анода (<i>L</i> _a)	4 ~ 8 мм
Фокусирующий электрод (<i>Z_f</i> , α)	Положение и угол

1. Оптимизация расстояния между катодом и управляющим электродом

<i>L_{c_el}</i> , мм	<i>I_{gun}</i> , мА	<i>d</i> , мм
8,32	97	3,6
7,92	101	4,0
7,42	108	3,8
6,92	116	3,8
6,42	126	4,0
5,92	140	4,0
5,42	158	4,2
4,92	181	4,4
4,42	214	4,6
3,92	262	5,0
3,42	325	5,4

1. Оптимизация расстояния между катодом и управляющим электродом

<i>L_{c_el}</i> , мм	<i>I_{gun}</i> , мА	<i>d</i> , мм
8,32	97	3,6
7,92	101	4,0
7,42	108	3,8
6,92	116	3,8
6,42	126	4,0
5,92	140	4,0
5,42	158	4,2
4,92	181	4,4
4,42	214	4,6
3,92	262	5,0
3,42	325	5,4

1. Оптимизация расстояния между катодом и управляющим электродом

< Распределение электростатического потенциала в пространстве пушки >

H

Оптимизация электронной пушки

2. Влияние радиуса пролетного отверстия анода на параметры пучка

< Траектории электронов при $L_{c_{el}} = 3,42$ мм >

<Распределение электростатического потенциала в пространстве пушки>

2. Влияние радиуса пролетного отверстия анода на параметры пучка

<Зависимость энергии электронов на выходе пушки от радиуса анода> <Траектории электронов при $R_a = 2,5$ мм.>

3. Оптимизация расстояния между управляющим электродом и анодом

<Зависимость тока пушки от расстояния между управляющим электродом и анодом>

<Траектории электронов при $L_{el_a} = 10$ мм>

4. Оптимизация длины управляющего электрода

- Ближний к катоду край управляющего
 электрода формирует рассеивающую
 линзу.
- Видно, что длина управляющего
 электрода влияет на сходимость
 электронного пучка.

4. Оптимизация длины управляющего электрода

<Траектории электронов при $L_{el} = 1,5$ мм>

4. Оптимизация длины управляющего электрода

 Зависимость среднеквадратичного поперечного размера пучка на выходе электронной пушки от длины управляющего электрода >

< Зависимость среднеквадратичного поперечного угла пучка на выходе электронной пушки от длины управляющего электрода >

 Зависимость среднеквадратичного поперечного размера пучка на выходе электронной пушки от длины анода >

< Траектории электронов при $L_a = 4$ мм >

6. Оптимизация фокусирующего электрода

<i>L_{c_el}</i> , мм	<i>I_{gun}</i> , мА	<i>d</i> , мм
8,32	97	3,6
7,92	101	4,0
7,42	108	3,8
6,92	116	3,8
6,42	126	4,0
5,92	140	4,0
5,42	158	4,2
4,92	181	4,4
4,42	214	4,6
3,92	262	5,0
3,42	325	5,4

6. Оптимизация фокусирующего электрода

Ng	L _{c_el} ,мм	Z _f ,мм	α,град.	Х _{rms} ,мм	х′ _{rms} ,рад	I _{gun} ,мА	ɛ _{rms} , мм*мрад		
1	3,42	1,42	112	0,906	0,0365	355	30,31		
2	3,67	1,42	112	0,857	0,0362	313	29,17		
3	3,92 1	1,42	112	0,816	0,0361	278	28,15		
4	3,92	1,22	112	0,905	0,0325	334	28,06	Ra	R15
5	4,12	1,22	112	0,876	0,0322	307	27,37		<u>0,51</u> 야 Zf 댩
6	4,22	1,22	112	0,863	0,0321	295	27,03	La	Lei_a Lei Lc_ei
7	4,22	1,22	105 3	0,844	0,0327	283	26,85	<	< Неизменные размеры пушки

< Оптимизация сходимости пучка >

< Неизменные размеры пушки и обозначения изменяемых размеров >

3,3

7. Зависимость параметров пучка от напряжения между управляющим электродом и катодом

< Зависимость тока пушки от напряжения на управляющем электроде относительно катода >

 Зависимость среднеквадратичного размера пучка от напряжения на управляющем электроде относительно катода >

7. Зависимость параметров пучка от напряжения между управляющим электродом и катодом

< Траектории электронов при напряжении на управляющем электроде относительно катода 3 кВ >

< Траектории электронов при напряжении на управляющем электроде относительно катода 0,5 кВ >

- 8. Расчеты динамики пучка в ускоряющей структуре
 - Расчеты динамики пучка в ускоряющей структуре были проведены с помощью программы Parmela для различных напряжений на управляющем электроде пушки относительно катода.

 Зависимость коэффициента захвата электронов в ускоряющей структуре от тока пушки >

 Зависимость суммарной мощности частиц пучка с энергией, большей 800 кэВ, на выходе ускорителя от тока пушки >

- В этой диссертации были проведены исследавиния, чтобы получить результаты оптимизации электронной пушки для электрического тока 290мА и обеспечивать сходящийся пучок электронов с энергией 15.5 кэВ на входе в ускоряющую структуру.
- В результате выполнения диссертационной работы была оптимизирована электронная пушка.
- Требуемые параметры были достигнуты, итоговые геометрические размеры приведены в таблице.

Проектные параметры электронной пушки

Параметр	Значение
Z_f , ММ	1,22
α, град.	105
<i>L_{c_el}</i> , мм	4,22
<i>L_{el}</i> , мм	3,5
<i>L_{el_a}</i> , мм	5
<i>L</i> _{<i>a</i>} , мм	4
<i>R</i> _{<i>a</i>} , мм	2,5
<i>R_{el}</i> , мм	2,8

Спасибо за внимание!

Литература

- 1. A. Alimov, A. Chepurnov, O. Chubarov et al. CW linear accelerator with high beam current. Proceedings of LINAC-1994, Tsukuba, Japan. KEK, Tsukuba, Japan, 1994. P. 603-605.
- 2. A. Alimov, A. Chepurnov, O. Chubarov et al. Compact low energy cw linac with high beam current. Proceedings of PAC-1995, Dallas, TX. IEEE, New York, 1995. P. 1096-1098.
- A.S. Alimov, D.I. Ermakov, B.S. Ishkhanov et al. A 1.2-MeV Two-Section Continuous Wave Linear Electron Accelerator with 50-mA Average Beam Current. Instruments Exp. Techniques. 2002. Vol. 45,

№ 5.P. 691–697.

- 4. D.S. Yurov, A.S. Alimov, B.S. Ishkhanov et al. Continuous-wave electron linear accelerators for industrial applications. Phys. Rev. AB. 2017.Vol. 20, 044702.P. 1-11.
- 5. Г. Пак, Д.С. Юров, Мощный ускоритель электронов непрерывного действия с энергией пучка 1 МэВ. Труды XX межвузовской научной школы молодых специалистов «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине», 2019. С. 74-78.
- 6. Stanley Humphries, Jr., Charged particle beams. John Wiley and Sons, 1990. P. 288.
- 7. <u>https://www.cst.com/</u>
- 8. (2007, October). CST Particle Studio, Features and Application Examples. Computer Simulation Technologies Available: https://www.cst.com/Content/Events/UGM2007/04-Balk.pdf (Last accessed on October 20, 2014).

Литература

 (2014) CST Particle Studio. Computer Simulation Technologies. [Online]. Available: https://www.cst.com/Products/CSTPS (Last accessed on October 20, 2014).
 J.H. Billen, L.M. Young, PARMELA, Los Alamos National Laboratory Report, LA-UR-96-1835 (1996).
 M.Hoseinzade, A.Sadighzadeh, Design and numerical simulation of thermionic electron gun, Nuclear Science and Technology Research Institute Report(Iran, 2015)
 Amitava Roy, Electronic Emission & Electron Guns, Proceedings of SPPT 2010, BARC(Mumbai,

2. Amitava Roy, Electronic Emis 2010)