Многочастичные адронные распады прелестных барионов, рожденных в детекторе LHCb

Гусейнов Керим Демирович

Научный руководитель: Горелов Игорь Владимирович

Московский государственный университет имени М.В. Ломоносова Физический факультет Кафедра общей ядерной физики

8 июня 2020

Введение

 \varLambda_b^0 – легчайший прелестный барион; он является основным состоянием трехкварковой системы (udb). Распады прелестных барионов интересны для проверки феноменологических моделей КХД, описывающих непертурбативный режим, а также для поисков новой физики. В данной работе изучаются вероятности многочастичных распадов \varLambda_b^0 , при которых барионное число переходит протону, а c-кварк адронизуется в D-мезон:

$$\begin{array}{ll} \varLambda_b^0 \to D^+ p \pi^- \pi^-, & D^+ \to K^- \pi^+ \pi^+, \\ \varLambda_b^0 \to D^{*+} p \pi^- \pi^-, & D^{*+} \to D^+ \pi^0 \, / \, D^+ \gamma. \end{array}$$

Измеряются отношения

$$\begin{split} R &= \frac{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)} \times \frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)}, \\ R^* &= \frac{\mathcal{B}(\Lambda_b^0 \to D^{*+} p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)} \times \left(\mathcal{B}(D^{*+} \to D^+ \pi^0) + \mathcal{B}(D^{*+} \to D^+ \gamma)\right). \end{split}$$

Детектор LHCb

Модель спектра инвариантных масс $m(D^+p\pi^-\pi^-)$

Модель спектра инвариантных масс $m(\Lambda_c^+\pi^-\pi^+\pi^-)$

Стабильность аппроксимации и корректировка результата

Фоновые вклады физических состояний

После корректировки на предыдущем этапе

$$N_{D^+} = 1942 \pm 51, \quad N_{D^{*+}} = 865 \pm 51, \quad N_{A_c^+} = 26457 \pm 127.$$

$$\Lambda_b^0 \to D^+(\to K^- \pi_1^+ \pi_2^+) p \pi_1^- \pi_2^-, \qquad \Lambda_b^0 \to \Lambda_c^+ (p K^- \pi_1^+) \pi_1^- \pi_2^+ \pi_2^-$$

$$m_{1,2} = m(p K^- \pi_{1,2}^+) \qquad m' = m(p K^- \pi_2^+)$$

$$(199 \pm 16) + (198 \pm 16) \qquad (427 \pm 34)$$

 $\Lambda_h^0 \to \Lambda_a^+ D_a^-, \qquad D_a^- \to \pi^- \pi^+ \pi^-, \qquad m_{3\pi} \qquad (176 \pm 25)$

В результате

$$\begin{split} N_{D^+} &= (1942 \pm 51) - (199 \pm 16) - (198 \pm 16) = 1545 \pm 55, \\ N_{A_c^+} &= (26457 \pm 127) - (176 \pm 25) - (427 \pm 34) = 25894 \pm 134. \end{split}$$

Эффективности регистрации и восстановления распадов

Вклады в полные эффективности основного, резонансного и нормировочного сигналов.

$arepsilon^{ ext{cuts}}$	$arepsilon^{ ext{PID}}$	$\delta arepsilon^{ m track}$	$\varepsilon^{ m trigger}$
0.00946	0.54264	1.06214	0.33619
± 0.00004	± 0.00364	± 0.00740	± 0.00239
0.00900	0.54712	1.06237	0.32923
± 0.00004	± 0.00370	± 0.00745	± 0.00238
0.00887	0.55338	1.0712	0.355355
$\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^- $ ± 0.00004	± 0.00400	± 0.008043	± 0.002687
	0.00946 ± 0.00004 0.00900 ± 0.00004 0.00887		

$$\frac{A_{D^+}}{A_{A_c^+}} \frac{\varepsilon_{D^+}^{\rm tot}}{\varepsilon_{A_c^+}^{\rm tot}} = 1.11396 \pm 0.00942, \qquad \frac{A_{D^{*+}}}{A_{D^+}} \frac{\varepsilon_{D^{*+}}^{\rm tot}}{\varepsilon_{D^+}^{\rm tot}} = 0.92253 \pm 0.00787.$$

 $A_{D^{*+}}/A_{D^{+}} = 0.98186 \pm 0.00298.$

 $A_{D^+}/A_{A_a^+} = 1.13535 \pm 0.00318,$

Систематические погрешности

Систематические погрешности обусловлены

- ullet выбором моделей спектров масс: 1.0% для R и 5.1% для R^* .
- ullet ошибками вероятностей мод распада $D^{*+}\colon 0.7\%$ для $R^*.$
- ullet способом учета дублирующихся событий: 0.5% для R и 1.0% для $R^*.$
- процедурой взвешивания данных моделирования: 0.99% для R и 0.98% для R^* .
- ullet критериями отбора событий: 1.9% для R и 2.8% для $R^*.$
- эффективностями идентификации частиц, трековой системы и триггера: 0.7%, 0.2%, 0.9% для R и 0.5%, 0.01%, 0.5% для R^* .

Всего: 2.68% для R и 6.07% для R^* .

Результаты

Определенные в результате анализа отношения равны

$$R = 0.0536 \pm 0.0019 ({\rm CTAT}) \pm 0.0014 ({\rm CИСТ}),$$
 $R^* = 0.6071 \pm 0.0417 ({\rm CTAT}) \pm 0.0368 ({\rm CИСТ}).$

Сравним результат с аналогичным распадом $\varLambda_b^0 o D^0 p \pi^-$

[arXiv:1311.4823]

$$\frac{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^0 p \pi^-)} = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^0 p \pi^-)} \times \frac{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)}{\mathcal{B}(D^0 \to K^- \pi^+)} \times R \times
\times \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} \times \frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(D^0 \to K^- \pi^+)} = 2.4 \pm 1.9.$$

Для сравнения,
$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 1.56 \pm 0.21.$$
 [pdg.lbl.gov]

Для вероятностей основного и резонансного распадов \varLambda_b^0 , изучаемых в этой работе,

$$\frac{\mathcal{B}(\Lambda_b^0 \to D^{*+} p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)} = 1.879 \pm 0.129 (\mathrm{CTaT}) \pm 0.114 (\mathrm{CUCT}) \pm 0.028 (\mathrm{PDG}).$$

Итоги

В работе изучались распады $\varLambda_b^0 \to D^+ p \pi^- \pi^-$ и $\varLambda_b^0 \to D^{*+} p \pi^- \pi^-$ в нормировке на канал $\varLambda_b^0 \to \varLambda_c^+ \pi^- \pi^+ \pi^-$.

Были получены экспериментальные спектры инвариантных масс, составлены их модели и проведена аппроксимация с учетом вносимых минимизирующим алгоритмом искажений и обусловленных физическими явлениями фоновых вкладов.

Были оценены эффективности регистрации и отбора событий для изучаемых и используемых в работе распадов.

Кроме того, были детально исследованы возникающие в анализе систематические погрешности.

Полученным значениям отношений вероятностей каналов распада \varLambda_b^0 -бариона была дана простейшая интерпретация и обоснование.