Многочастичные адронные распады прелестных барионов, рожденных в детекторе LHCb

Гусейнов Керим Демирович

Научный руководитель: Горелов Игорь Владимирович

Московский государственный университет имени М.В. Ломоносова Физический факультет Кафедра общей ядерной физики

8 июня 2020

Введение

 Λ_b^0 – легчайший прелестный барион; он является основным состоянием трехкварковой системы (udb). Распады прелестных барионов интересны для проверки феноменологических моделей КХД, описывающих непертурбативный режим, а также для поисков новой физики. В данной работе изучаются вероятности многочастичных распадов Λ_b^0 , при которых барионное число переходит протону, а c-кварк адронизуется в D-мезон:

$$\begin{split} \Lambda^0_b &\to D^+ p \pi^- \pi^-, \qquad D^+ \to K^- \pi^+ \pi^+, \\ \Lambda^0_b &\to D^{*+} p \pi^- \pi^-, \qquad D^{*+} \to D^+ \pi^0 \,/\, D^+ \gamma. \end{split}$$

Измеряются отношения

$$R = \frac{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)} \times \frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)},$$

$$R^* = \frac{\mathcal{B}(\Lambda_b^0 \to D^{*+} p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)} \times \left(\mathcal{B}(D^{*+} \to D^+ \pi^0) + \mathcal{B}(D^{*+} \to D^+ \gamma)\right).$$

Детектор LHCb

Модель спектра инвариантных масс $m(D^+p\pi^-\pi^-)$

4/11

Модель спектра инвариантных масс $\overline{m(\Lambda_{c}^{+}\pi^{-}\pi^{+}\pi^{-})}$

Стабильность аппроксимации и корректировка результата

6/11

Фоновые вклады физических состояний

После корректировки на предыдущем этапе

$$N_{D^+} = 1942 \pm 51, \quad N_{D^{*+}} = 865 \pm 51, \quad N_{A_c^+} = 26457 \pm 127.$$

$$\begin{split} \Lambda_b^0 &\to D^+ (\to K^- \pi_1^+ \pi_2^+) p \pi_1^- \pi_2^-, \qquad \Lambda_b^0 \to \Lambda_c^+ (p K^- \pi_1^+) \pi_1^- \pi_2^+ \pi_2^- \\ m_{1,2} &= m (p K^- \pi_{1,2}^+) \qquad \qquad m' = m (p K^- \pi_2^+) \\ (199 \pm 16) + (198 \pm 16) \qquad (427 \pm 34) \\ \Lambda_b^0 \to \Lambda_c^+ D_s^-, \qquad D_s^- \to \pi^- \pi^+ \pi^-, \qquad m_{3\pi} \qquad (176 \pm 25) \end{split}$$

В результате

$$N_{D^+} = (1942 \pm 51) - (199 \pm 16) - (198 \pm 16) = 1545 \pm 55,$$

$$N_{A_c^+} = (26457 \pm 127) - (176 \pm 25) - (427 \pm 34) = 25894 \pm 134.$$

Эффективности регистрации и восстановления распадов

Вклады в полные эффективности основного, резонансного и

Распад	$\varepsilon^{\mathrm{cuts}}$	$\varepsilon^{\mathrm{PID}}$	$\delta \varepsilon^{\mathrm{track}}$	$\varepsilon^{\mathrm{trigger}}$
$\Lambda_b^0 \to D^+ p \pi^- \pi^-$	0.00946	0.54264	1.06214	0.33619
	± 0.00004	± 0.00364	± 0.00740	± 0.00239
$\Lambda_b^0 \to D^{*+} p \pi^- \pi^-$	0.00900	0.54712	1.06237	0.32923
	± 0.00004	± 0.00370	± 0.00745	± 0.00238
$\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$	0.00887	0.55338	1.0712	0.355355
	± 0.00004	± 0.00400	± 0.008043	± 0.002687

нормировочного сигналов.

 $A_{D^+}/A_{\Lambda_c^+} = 1.13535 \pm 0.00318,$

$$A_{D^{*+}}/A_{D^+} = 0.98186 \pm 0.00298.$$

$$\frac{A_{D^+}}{A_{\Lambda_c^+}} \frac{\varepsilon_{D^+}^{\text{tot}}}{\varepsilon_{\Lambda_c^+}^{\text{tot}}} = 1.11396 \pm 0.00942, \qquad -$$

$$\frac{A_{D^{*+}}}{A_{D^+}} \frac{\varepsilon_{D^{*+}}^{\text{tot}}}{\varepsilon_{D^+}^{\text{tot}}} = 0.92253 \pm 0.00787.$$

Систематические погрешности обусловлены

- выбором моделей спектров масс: 1.0% для R и 5.1% для R^* .
- ошибками вероятностей мод распада D^{*+} : 0.7% для R^* .
- способом учета дублирующихся событий: 0.5% для R и 1.0% для $R^*.$
- процедурой взвешивания данных моделирования: 0.99% для R и 0.98% для R*.
- критериями отбора событий: 1.9% для R и 2.8% для R^* .
- эффективностями идентификации частиц, трековой системы и триггера: 0.7%, 0.2%, 0.9% для *R* и 0.5%, 0.01%, 0.5% для *R**.

Всего: 2.68% для R и 6.07% для R^* .

Результаты

Определенные в результате анализа отношения равны

 $R = 0.0536 \pm 0.0019 ({\rm CTat}) \pm 0.0014 ({\rm Cuct}),$

 $R^* = 0.6071 \pm 0.0417 ({\rm CTat}) \pm 0.0368 ({\rm Cuct}).$

Сравним результат с аналогичным распадом $\Lambda_b^0 o D^0 p \pi^-$ [arXiv:1311.4823]

$$\frac{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^0 p \pi^-)} = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^0 p \pi^-)} \times \frac{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)}{\mathcal{B}(D^0 \to K^- \pi^+)} \times R \times \\ \times \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} \times \frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(D^0 \to K^- \pi^+)} = 2.4 \pm 1.9.$$

Для сравнения, $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 1.56 \pm 0.21.$ [pdg.lbl.gov]

Для вероятностей основного и резонансного распадов Λ_b^0 , изучаемых в этой работе,

$$\frac{\mathcal{B}(\Lambda_b^0 \to D^{*+} p \pi^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to D^+ p \pi^- \pi^-)} = 1.879 \pm 0.129 (\text{CTAT}) \pm 0.114 (\text{CMCT}) \pm 0.028 (\text{PDG}).$$
10/11

Итоги

В работе изучались распады $\Lambda^0_b\to D^+p\pi^-\pi^-$ и $\Lambda^0_b\to D^{*+}p\pi^-\pi^-$ в нормировке на канал $\Lambda^0_b\to\Lambda^+_c\pi^-\pi^+\pi^-.$

Были получены экспериментальные спектры инвариантных масс, составлены их модели и проведена аппроксимация с учетом вносимых минимизирующим алгоритмом искажений и обусловленных физическими явлениями фоновых вкладов.

Были оценены эффективности регистрации и отбора событий для изучаемых и используемых в работе распадов.

Кроме того, были детально исследованы возникающие в анализе систематические погрешности.

Полученным значениям отношений вероятностей каналов распада Λ_b^0 -бариона была дана простейшая интерпретация и обоснование.