

Московский государственный университет имени М.В. Ломоносова Физический факультет Кафедра общей ядерной физики

Нуклонные корреляции и характеристики трансфермиевых элементов

Бакалаврская работа

Симонов Макар Валерьевич, студент 413 группы Научный руководитель: с. н. с., к. ф.-м. н. Третьякова Т.Ю.

Расчет энергии связи, энергий реакций и **массовых характеристик**, отражающих спаривание и четно-нечетные эффекты, требует разработки точных **вычислительных методов** с приемлемой трудоемкостью.

Для **сверхтяжелых** элементов (SHE) важными величинами является энергия связи и энергия α-распада. **Цель работы** — изучение массовых соотношений, отражающих протоннейтронные корреляции.

Задачи

- Поиск массовых соотношений с регулярным поведением
- Расчет характеристик SHE с использованием массовых соотношений:
 - > Энергия связи
 - Энергия α-распада
 - Период полураспада по α-каналу

Трансфермиевые, или сверхтяжелые, элементы (SHE)

Массовые соотношения

Массовая разностная характеристика для оценки *пр*-корреляций:

$$\Delta_{np}(Z,N) = [S_{np}(Z,N) - S_p(Z,N-1) - S_n(Z-1,N)] = [B(Z,N) - B(Z,N-1)] - [B(Z-1,N) - B(Z-1,N-1)]$$

НУКЛОННЫЕ КОРРЕЛЯЦИИ И ХАРАКТЕРИСТИКИ SHE

Остаточное пр-взаимодействие Δ_{np}

Методика вычисления. Результаты до Z=106

Результаты до Z=106. Энергия α-распада

Результаты до Z=106. Период полураспада по α-каналу

Выход за Z=106

Расслоение массовой поверхности

Результаты для Z=107-110. Удельная энергия связи через $\Delta_{np}^{(3)}$

Выход за Z=106

Результаты для Z=107-110. Удельная энергия связи и энергия α-распада через энергии отделения

Симонов М.В.

Выводы

- 1. Построены аппроксимации $\Delta_{np}, \Delta_{np}^3, S_{pp}, S_{nn}$ на основе экспериментальных данных AME2016
- Получены оценки энергии связи, энергии α-распада для изотопов Z = 101 110 с числом нейтронов N = 146 – 161. Точность для удельной энергии связи – 15-30 кэВ, для энергии α-распада – 0,5-0,9 МэВ.
- 3. Для элементов *Z* = 101 106 получены оценки периода полураспада по α-каналу с точностью до 1,5 порядка

- Анализ массовых характеристик: энергий отделения S_{pp}, S_{nn}, S_α, S_d, остаточного протон-нейтронного взаимодействия Δ_{np}, характеристик расслоения массовой поверхности Δ³_{np}, Δ_{nn} – показал, что наиболее регулярным поведением обладают соотношения S_{pp}, S_{nn}, Δ_{np}, Δ³_{np}.
- 2. Показано, что соотношения Δ_{np}, S_{pp}, S_{nn} могут использоваться для расчета массовых характеристик в области SHE.
 - *a)* Δ_{np} позволяет делать предсказания в областях с небольшим количеством неизвестных ядер.
 - b) Энергии отделения S_{pp} , S_{nn} в области SHE на линиях изотонов и изотопов соотв-но ведут себя линейно, что позволяет делать предсказания вдали от массива экспериментальных данных.
 - c) Для характеристики расслоения Δ_{np}^3 ее колебания на изолиниях оказываются критическими и не позволяют получать предсказания для SHE.

Энергия связи *В* — базовая характеристика ядра, на которую влияют микро- и макроскопические свойства ядра.

Общая зависимость *В* от *Z, N* известна, однако **остаточное взаимодействие** не до конца изучено.

Остаточное взаимодействие связано с нуклонными корреляциями и проявляется в эффектах спаривания нуклонов и четно-нечетном расслоении массовой поверхности *B(Z, N)*.

Расслоение массовой поверхности

Аппроксимация

Результаты для Z=101-106. Погрешность

1. Погрешность для удельной энергии связи:

$$\sigma_{1step}^{2} = \sum \sigma_{exp}^{2} + \sigma_{approx}^{2}$$

Для ядер с зарядом *Z=83-110*

- *σ_{exp}*~0,1 кэВ
- *σ_{approx}~*(0,7 + 0,8) кэВ
- $\sigma_{1step} \sim 1,5$ кэВ; достигает для $\sigma_{10step} \sim \sqrt{4} \cdot 9 = 27$ кэВ
- 1. Погрешность для энергии α-распада:

•
$$\sigma_{\alpha} \sim \sqrt{2} \cdot \sigma_{nstep} \cdot A = 0,9 \text{ M}_{3}\text{B}$$

Результаты для Z=107-110. Погрешность

1. Погрешность для удельной энергии связи:

$$\sigma_{1step}^{2} = \sum \sigma_{exp}^{2} + \sigma_{approx}^{2}$$

Для ядер с зарядом *Z=83-110*

- *σ_{exp}*∼0,1 кэВ
- *σ_{approx}~*0, 7 кэВ
- $\sigma_{1step} \sim 0,7$ кэВ; достигает для $\sigma_{10step} \sim \sqrt{4} \cdot 9 = 13$ кэВ
- 1. Погрешность для энергии α-распада:

•
$$\sigma_{\alpha} \sim \sqrt{2} \cdot \sigma_{nstep} \cdot A = 0,5 \text{ M}_{3}\text{B}$$