Разработка прототипа трековой системы эксперимента ВМ на ускорителе Нуклотрон

Фазовая диаграмма КХД

2

Эксперимент ВМ@N

BM@N KTC

- Состоит из 4 станций основанных на модулях с двухсторонними кремниевыми микростриповыми сенсорами
- 292 модуля
- 600 тыс. каналов считывания
- Потребление энергии ~ кВт

Сенсоры

- Двухсторонние
- Толщиной 300 мкм
- 1024 стрипа с шагом 58 мкм
- Угол между стрипами на разных сторонах 7.5°
- Производители: CiS , Германия и Hamamatsu, Япония
- Размеры:
- 6.2 х 6.2 см
- 4.2 х 6.2 см
- 4.2 х 6.2 см с вырезом

Считывающая электроника STS-XYTER

- Считывающая электроника основана на микросхемах STS/MUCH XYTER
- 128 каналов считывания
- Самотриггирование
- 5-бит АЦП, временное разрешение < 8 нс
- Время формирования сигнала 40–60 нс (в быстром формирователе для временного разрешения) и 80–120 нс (в медленном формирователе для амплитудного разрешения)
- Шум: < 1500 ENC при входной нагрузк
- Переключаемые динамический диапазон (вплоть до 120 фКл) и коэффициент усиления

Front-end Board version 1.0 c 8 микросхемами STS-XYTER

Пучковые испытания на LINAC-200

Совместно с Дементьевым Д.В. и Шитенковым М.О.

Тестовая станция

Front-End Board

Hamamatsu baby-сенсор

- Размер: 14.9×14.9 мм
- 256 стрипов на каждой стороне
- Шаг стрипов
 50,7 мкм
- Угол между стрипами на разных сторонах 90°

Пучковые испытания на LINAC-200

мочок 100 см 30 см 35 см 35 см 35 см 35 см 55 см

1) Тестировалась считывающая электроника:

- Микросхемы STS-XYTER новой версии
- Система временной синхронизации
- Система сбора данных
- 2) Сбор данных в двух режимах:
- Потоковом и
- с временной меткой от триггерного сигнала

STS 1,2 – Тестовые станции с двухсторонними стриповыми кремниевыми сенсорами 15x15 мм SC – сцинтилляционный счётчик 200x200 мм

Разница во времени между сигналами на N и P сторонами сенсора

Time diff for hits Sts 3 N and Sts 4 N

Time diff for hits Sts 3 P and Sts 4 P

Разница во времени между сигналами на двух сенсорах

Результаты

Результаты

- Протестирована считывающая электроника на основе микросхем STS-XYTER.
- Проверена стабильность и качество систем сбора данных и временной синхронизации на основе плат AFCK FPGA и программы эмулятора GBTx.
- Рассинхронизация не превышает 10 нс, временная синхронизация сохранялась стабильной более 10 часов.
- Проверена работа считывающей электроники в режиме свободного потокового сбора данных.
- Собраны данные для анализа и настройки ускорителя.

Исследование и оптимизация прототипа системы охлаждения модуля кремниевой трековой системы эксперимента BM@N

Совместно с Дементьевым Д.В. и Лыгденовой Т.З.

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

- FEB Front-end Board плата со считывающей электроникой
- LDO Линейный стабилизатор напряжения
- FEB-box Front-end board-box коробка с платами считывающей электроники (которая также является алюминиевым радиатором)
- Fin тепловой мост
- Препрег композитный материал, представляющий собой листы волокнистых материалов, пропитанных полимерными связующими.

Задачи:

Материалы тепловых мостов

 ✓ Клей плата-Fin: сравнение клеев с алмазной крошкой

✓ Моделирование на Ansys

✓ Сравнение тепловых интерфейсов между FEB-box и радиатором

Материалы тепловых мостов: тепловое сопротивление и теплопроводность различных видов углепластика

Экспериментальный стенд для измерения теплопроводности в плоскостном направлении.

$$Q = \frac{Q_1 + Q_2}{2} = \lambda_{Al} A \frac{\frac{dT_1}{dx_1} + \frac{dT_2}{dx_2}}{2},$$

Теплопроводность материала λ задается законом Фурье.

Материалы тепловых мостов: тепловое сопротивление и

теплопроводность различных видов углепластика

Образец №	Теплопроводность вдоль волокна, Вт/м*К.	Теплопроводность перпендикулярно
1: 3 слоя препрега, толщина 0,75 мм	12±4.7	з,7±0.9
2: 6 слоев препрега, толщина 1,27 мм	17±4,5	8±2
3: 6 слоев препрега, с графеновой бумагой FGS (0,003 мм) по краям, толщина 1 мм	64±12,1	22±3.7
4: Препрег с графеновой бумагой FGS (0,03 мм) и добавлением алмазного порошка***, толщина 0,7 мм	254±82.9	14±3.4
5: 4 слоя препрега, по краям с двух сторон слои углеткани (5 мм), в центре 10 слоев графеновой бумаги FGS и эпоксидная смола	147±28,1	

Каждый образец состоял из препрега*, угольной вуали и клея^{**}

λs ₉₀			
	λs_0	•	

*EX-1515/K13D2U 2K, 120 GSM, 33% RC, **Клей (ЭД20+этал 45М), ***Две фракции алмазного порошка:

30-40 мкм и 7-10 мкм

Клей плата-Fin: сравнение клеев с алмазной крошкой

Экспериментальный стенд для измерения теплопроводности в тонком слое.

Клей плата-Fin: сравнение клеев с алмазной крошкой

Таблица 1. Тепловое сопротивление образцов 1–4,

с использованием в качестве термоинтерфейса термопрокладки.

Таблица 2. Тепловое сопротивление образцов 5–7, с использованием в качестве термоинтерфейса FGS-бумаги.

Образец №	Тепловое		Образец №	Тепловое	
	сопротивление,			сопротивление,	
	К/Вт			К/Вт	
1: Две фракции алмазной крошки в	1,9±0.97		5: Две фракции алмазной крошки в массовом	0,28±0,08	
массовом соотношении с клеем 1/1/1			соотношении крупной фракции с мелкой		
2: Мелкая фракция алмазной крошки в	2,96±0.22	1	фракцией с клеем 4/1/5		-
массовом соотношении с клеем 1/1			6: Две фракций алмазной крошки в массовом	$0,05{\pm}0,01$	
3: Крупная фракция алмазной крошки в	2,94±0.54		соотношении крупной фракции с мелкой фракцией (18/1) с клеем 90/5/57	Cootbetctbyet $\lambda = 2,48\pm1,3$ Bt/m*K	
массовом соотношении с клеем 1/1			7: Нитрид бора в массовом соотношении с клеем	1,58±0,46	
4: Две фракции алмазной крошки в	2,27±0.49		KTK 1/10		
массовом соотношении с клеем 1/1/2					20

Сравнение полученного клея с пленочным клеем ТПК

Средняя температура микросхем. Температура алюминиевой пластины составляет 20 °С.

	t, °C
клей с добавлением алмазной крошки 18/1 (100 мкм)	28,1±1,3
пленочный клей (100 мкм)	28,6±0,7
пленочный клей с добавлением алмазной крошки (110 мкм)	25,9±1,5
пленочный клей с добавлением алмазной крошки (160 мкм)	28,1±1,4
теплопроводный скотч (500 мкм)	33,4±2,5

Температура измерялась между имитаторами чипов

Алюминиевая пластина с приклеенными к ней нагревателями

Измерение температур

Основание теплового моста 20°С

	ANSYS, °C	Измеренные значения, °С
Верхний ряд микросхем	42,3	42,4±2,4
Нижний ряд микросхем	39,7	40,6±4,8
Микросхемы стабилизаторов напряжения	42,4	43,1±7,3

Имитаторы микросхем с подаваемой мощностью: STS-XYTER — 9,6 Вт LDO — 3,2 Вт

Модель теплового моста

Толщина тепловых мостов: моделирование

Толщина тепловых мостов,	Температура верхнего ряда	Температура нижнего ряда	Температура LDO, °C
ММ	микросхем, °С	микросхем, °С	
1	48,90	44,50	45,70
2	43,90	41,88	42,55
2,5	41,80	39,40	41,22
3	37,97	35,66	31,97

Модель теплового моста 2 мм

Сравнение теплоотвода теплового моста, состоящего из различных материалов

	Тепловой мост из алюминия	Тепловой мост из углепластика
Температура верхнего ряда микросхем, °С	41,3	37,4
Температура нижнего ряда микросхем, °С	39,1	35
Температура LDO, °C	39,9	37,6

Сравнение тепловых интерфейсов между Feb-box и радиатором

Охлаждающий термостат: ATS-10°C

Тестирование различных теплопроводящих материалов

	Графено	Термопрокцал	Термопроклалка		Термоцаста	Термопаста	Термопаста
	вая	ка КПТД 2/1-	Thermal Grizzly	Термопаста	Polimetech	Thermalright	Thermalrigh
	бумага	0,20 (1	Carbonaut (62,5	GD900 (4,5	РК-2 (10,2	TF8 (13,8	t TFX (14,3
	FGS	Вт/м*К)	Вт/м*К)	Вт/м*К)	Вт/м*К)	Вт/м*К)	Вт/м*К)
Температура							
алюминиевого							
радиатора, °С	25,3±4,8	26,7±4,4	21,4±3,9	21,6±1,98	17,96±6,1	17,1±1,5	26,1±3,4
Температура							
теплового							
моста, °С	38,4±6,6	33,9±3,6	27,2±3,4	23,3±2,45	19,3±3,0	18±1,3	26,8±3,2
ΔT, °C	13,1	7,2	5,8	1,7	1,3	0,9	0,7

Результаты

- Были измерены теплопроводности 5 различных материалов для теплового моста. Лучшее значение показал образец №4 с λs₀= 254±82.9 Вт/м*К и λs₉₀= 14±3.4 Вт/м*К. Тем не менее, моделирование показало, что при использовании углепластика, отвод тепла улучшается незначительно по сравнению с алюминием той же толщины.
- Измерено 6 клеев с разными соотношениями фракций алмазной крошки. Наименьшее значения теплового сопротивления показал образец с добавлением 2-х фракций алмазной крошки с соотношением 1/18 мелкой к крупной. При сравнении лучшего жидкого клея с пленочным (ТПК-21) лучший отвод тепла показал пленочный клей с добавлением алмазов (110 мкм).
- Было показано, что при увеличении толщины тепловых мостов, удается уменьшить температуру микросхем.
- Использование термопасты обеспечивает лучший отвод тепла между FEB-box и радиатором, чем использование FGS-бумаги или термопрокладок.
- Статья подписана в печать и будет опубликована в одном из номеров ПТЭ.

Лазерная установка для проверки качества трековых модулей типа СВМ для эксперимента ВМ@N

Блок-схема установки

Компоненты

- 1) Генератор сигналов AFG3052C фирмы Tektronix (длительность импульса 12 нс).
- 2) Лазерный диод FPL-1064-14BF-1 фирмы Nolatex (длина волны 1064±5 нм, мощность 1 мВт, работа в импульсном режиме, оптоволоконный выход) и аналогичный FPL-635-14BF-1 на длине волны 635±5 нм.
- 3) Оптоволоконный аттенюатор VOA1064-FC фирмы Thorlabs (ослабление 1.3 50 дБ) и аналогичный VOA630-FC.
- 4) Конденсор PS-2 фирмы СоларЛС (фокусное расстояние 4 см, 100% энергии в пятне 50 мкм).
- 5) Система линейного перемещения из НИИЯФ МГУ (по одной оси, во временное пользование).

Схема работы драйвера шагового двигателя системы линейного перемещения

Лазерные диоды 635 и 1064 нм

- Соответствующие энергии квантов 1.95 и 1.17 эВ.
- Полные энергии лазерных импульсов, соответствующие минимально ионизирующей частице (MIP):

 $E_{635} = 1.95 \Rightarrow B \times 22500 = 43.875 \kappa \Rightarrow B = 7.0 * 10^{-15} \ \square \varkappa$,

 $E_{1064} = 1.17 \Im B \times 22500 = 26.325 \kappa \Im B = 4.2 * 10^{-15} \ \square \mathcal{P}.$

- Даже с учетом потерь в оптических линиях и при рассеянии, такая энергия слишком мала даже для маломощных лазерных диодов, поэтому необходимо использование аттенюаторов.
- Глубина поглощения фотонов с длиной волны 1060 нм составляет 901 мкм, поэтому только 28,3% лазерного импульса поглотится при прохождении 300 мкм толщины сенсора; с учетом отражения от дальней стороны сенсора, поглотится 35,3%.

Внешний вид стенда (в частично разобранном состоянии)

Результаты

- Протестирована работа всех компонентов лазерного стенда.
- Разработано программное обеспечение для управления стендом.
- Произведена калибровка параметров системы линейного перемещения, подобран наиболее стабильный режим работы.
- Сделан доклад по пучковым испытаниям системы считывания трековых модулей на международной конференции QFTHEP-2019, сделан постерный доклад на международной школе ESHEP-2019.
- Изготовлены каркас и обшивка, а также сделано светопоглощающее покрытие экранированного кожуха.

Запасные слайды

CBM@FAIR detector

2053k channels

16 000 Readout chips

1292 sensors

График для определения перепада температур. В качестве образца взят углепластик с добавлением алмазной крошки, прикреплённый на скотч (сплошная линия) и значения, рассчитанные с помощью ANSYS (пунктирная линия).

Объекты исследования

Тепловой макет FEB

левая сторона сенсора с размерами 90х40мм

правая сторона сенсора с размерами 90х40мм

левая сторона сенсора с размерами 101,5х30,6 мм

правая сторона сенсора с размерами 101,5х30,6 мм

Погрешности измерений

Распределение температуры между чипами

Нагревательный элемент

Тепловой макет четверти станции

FEBы на дюралюминиевом фине прикреплённый на радиатор(а), теплограмма тестирования тепловых интерфейсов(б)

Примеры фокусировки

