Прикладное применение эффекта Мессбауэра

К. Замогильный

1. Введение

Эффект Мессбауэра–явление испускания и поглощения гаммаквантов без потери энергии на отдачу ядра. Важнейшим свойством гамма излучения без отдачи, превратившим эффект Мессбауэра из любопытного лабораторного эксперимента в важный и признанный метод исследований, является ширина линии. Если при испускании кванта возбуждается решетка, то эффективная ширина линии по порядку величины равна энергии фононов. Если решетка не возбуждается (что и происходит при данном явлении), то ширина бесфононной компоненты излучения определяется только шириной ядерных уровней, между которыми происходит переход (таб. 1). Другой характеристикой ширины линии является ее отношение к полной энергии гамма-кванта. Данное отношение может по порядку достигать 10⁻¹³. Это эквивалентно утверждению, что энергию γ-лучей можно определять с точностью 10⁻¹³. Данный порядок не предел, так как точность измерения энергии можно воспроизвести вплоть до -17 порядка, что открывает дорогу ряду экспериментов, среди которых важнейший опыт Паунда и Ребки.

2. Опыт Паунда и Ребки

Одним из впечатляющих применений эффекта Мёссбауэра стал знаменитый эксперимент Паунда и Ребки, которые в 1960 году измерили в лабораторных условиях гравитационное красное смещение гамма-квантов, предсказываемое общей теорией относительности. В физике гравитационное красное смещение является проявлением эффекта изменения частоты

Изотоп	Энергия ү-квантов, <i>кэв</i>	Время жизни возбужденного состояния, 10 ⁻⁹ сек	Изотоп	Энергия ү-квантов, <i>кэв</i>	Время жизни возбужденног состояния, 10 ⁻⁹ сек
Fe ⁵⁷	14,4	100	Dy ¹⁶¹	26	28
Ni ⁶¹	71	51	Er166	81	1,8
Zn ⁶⁷	93	10 000	Tm169	8	4
Kr ⁸³	9		Yb170	84	1,6
Ru ⁹⁹	89	_	Hf177	113	0,6
Sn119	24	18	Ta ¹⁸¹	6,25	9800
Te ¹²⁵	35,5	2,2	W182	100	1,3
I 129	27	·	11/183	1 46	0,15
Xe ¹²⁹	40	1	Witte	1 99	0,57
Sm149	22	~1	Re187	134	2
Eu151	22	3	Ir ¹⁹¹	129	0,13
Sm152	122	1,4	Ir ¹⁹³	73	- 1
Gd155	87	0,6	Pt195	99	0,16
Tb159	58		Au ¹⁹⁷	77	1,9
Dy160	84	2,5			

Таблица 1

Изотопы, в которых наблюдался эффект Мессбауэра

испущенного некоторым источником света (вообще говоря, любых электромагнитных волн) по мере удаления от массивных объектов, таких как звёзды и чёрные дыры; оно наблюдается как сдвиг спектральных линий в излучении источников, близких к массивным телам, в красную область спектра. Для определения разности темпа хода времени в разнесённых по высоте точках Паунд и Ребка использовали измерения частоты фотонов в двух точках вдоль их траектории: в точке испускания и в точке поглощения. Разность в измеренной частоте в верхней и нижней точках указывает на разность хода времени в этих точках. Гамма-квант с энергией 14,4 кэВ, испускаемый возбуждённым ядром ⁵⁷Fe при переходе на основное состояние, проходил расстояние H = 22,5 м по вертикали в поле тяготения Земли и резонансно поглощался мишенью из того же материала. При точном совпадении частот фотона в точке испускания и поглощения и отсутствии отдачи испускающего и поглощающего ядер вероятность поглощения максимальна (источник и поглотитель настроены в резонанс), при расхождении частоты фотона и поглотителя вероятность поглощения уменьшается, в зависимости от разности частот и «остроты» резонанса (то есть ширины линии поглощения). Однако эффект в слабом гравитационном поле Земли очень мал, поэтому его обнаружение наталкивается

на существенные экспериментальные трудности. В первую очередь, даже при излучении и поглощении в одной точке (то есть даже в отсутствие гравитационного красного смещения) будет наблюдаться существенный доплеровский сдвиг частот между излучающим и поглощающим атомами ввиду того, что оба атома получают импульс отдачи от фотона. Этот доплеровский сдвиг отдачи для одиночного атома ⁵⁷Fe на пять порядков больше ожидаемого эффекта. Поэтому в эксперименте использовался открытый всего за два года до его проведения эффект Мёссбауэра, обеспечивающий поглощение импульса отдачи при испускании и поглощении фотона не отдельным ядром атома, а всем кристаллом. В условиях эксперимента относительное изменение частоты света должно составлять:

$$\frac{\delta\nu}{\nu} = \frac{-gH}{c^2} = -2.46 \cdot 10^{-15}.$$
 (1)

Точности имеющейся у Паунда и Ребки аппаратуры не хватало для таких измерений (т. к. для железа отношение Γ/E по порядку равно 10^{-13} , что превышает необходимую точность на 2 порядка). Тогда исследователи придумали остроумный приём для повышения точности измерений сдвига частоты: они догадались двигать источник фотонов вверх и вниз со скоростью $v = v_0 \cos(wt)$, где частота w порядка несколько десятков герц, а v₀ было подобрано так, чтобы доплеровский сдвиг частоты от него намного превышал предполагаемый гравитационный сдвиг частот. Гравитационное красное смещение, вызванное различием гравитационного замедления времени в точках излучения и приёма, добавляется к доплеровскому смещению и гравитационный относительный сдвиг частоты можно оценить по изменениям легко регистрируемого доплеровского смещения. Источником была железная фольга толщиной 15 мкм с внедрённым в неё ⁵⁷Со активностью около 0,4 Ки, при распаде которого путём электронного захвата (с периодом полураспада 272 дня) возникало ⁵⁷Fe в возбуждённом состоянии с энергией 14,4 кэВ. В эксперименте источник был помещён на подвижный элемент пьезодинамика, на который подавался синусоидальный сигнал звуковой частоты 50 Гц. Вначале Паунд и Ребка получили значение относительного сдвига частоты гамма-квантов в 4 раза больше ожидаемого. Это различие объяснялось разностью температур источника и мишени. Тепловое движение атома-источника (как и атома-поглотителя) за счёт классического эффекта Доплера в среднем не сдвигает линии излучения и поглощения, приводя лишь к их уширению, поскольку в классический доплеровский сдвиг даёт вклад лишь проекция скорости излучателя (приёмника) на направление распространения фотона, а эта проекция в среднем равна нулю. Однако спецрелятивистское замедление времени (релятивистский эффект Доплера) зависит не

от направления скорости источника (приёмника), а лишь от её абсолютной величины, поэтому в среднем не обнуляется. В результате теплового движения релятивистский эффект Доплера при разности температур источника и поглотителя в 1 градус даёт относительный сдвиг частот $\frac{\langle v \rangle^2}{2c^2}$ около 2,2·10⁻¹⁵, почти равный ожидаемому общерелятивистскому эффекту. Исследователям пришлось измерять эти температуры и учитывать их разность. Лишь после этого был получен итоговый результат для гравитационного смещения частоты

$$\frac{\delta\nu}{\nu} = -(2.57 \pm 0.26) \cdot 10^{-15},\tag{2}$$

в пределах ошибок измерения совпадавший с предсказанием ОТО.

3. Сверхтонкая структура

Вторая область применения зависит только от малости самой ширины линии. В стандартных экспериментах обычно измеряются сдвиги и расщепления порядка естественной ширины линии Г или больше. Для наблюдения разрешенной сверхтонкой структуры мессбауэровского спектра ширина Г не должна существенно превышать энергию сверхтонкого расщепления, т. е. величину порядка 10^{-7} – 10^{-6} эВ. Этому условию удовлетворяют многие мессбауэровские переходы.

3.1. Изомерный сдвиг

Появление изомерного сдвига, проявляющегося, как и температурный сдвиг, в виде смещения центра спектра от нулевой скорости, обусловлено электростатическим взаимодействием ядра с окружающими электронами. Для описания явления подразумевается сферическая модель ядра, имеющего конечный радиус. При этом у одних нуклидов испускание гамма-кванта может приводить к уменьшению (dR > 0), а у других — к увеличению размера ядра (dR < 0). Изменение R сопровождается изменением пространственного распределения (плотности) положительного заряда ядра. Это приводит к изменению энергии кулоновского взаимодействия ядерного заряда с плотностью электронного заряда $-e^2 \cdot [\psi(0)]^2$ в месте нахождения ядра.

Рис. 1. Мессбауэровский спектр при наличии изомерного сдвига

Если источник и поглотитель идентичны, то смещение ядерных уровней в источнике и поглотителе за счет изменения ядерного радиуса будет одинаковым, и энергия перехода между смещенными уровнями основного

Рис. 2. ИС для двух различных поглотителей

и возбужденного состояния в источнике E(s) и поглотителе E(a) останется той же. Если же атомы в источнике и поглотителе различны, E(s) будет отличаться от E(a) и максимум резонансного поглощения проявится при скорости неравной нулю.

При этом ИС явно зависит от разности числа валентных электронов источника и поглотителя. К примеру для альфа-олова источника имеется 1 валентный электрон, а для поглотителей $SnCl_2$ и $BaSnO_3$ имеется 2 и 0 валентных электронов соответственно.

Следовательно, положительная разность числа электронов сопровождается сдвигом в положительную область скорости, для отрицательной — наоборот (рис. 2).

Измерения ИС имеют большое значение также и в физике твердого

тела, химии, биологии, геологии и в других областях благодаря высокой чувствительности электронной плотности в области ядра к особенностям электронной структуры вещества. По величине ИС можно судить об эффективном заряде ионов, заселенности валентных электронных орбиталей атомов, исследовать фазовый состав твердых тел, изучать кинетику фазовых переходов и химических реакций и т. д.

3.2. Квадрупольное взаимодействие

Другой тип сверхтонкого взаимодействия, названный квадрупольным, представляет собой взаимодействие квадрупольного момента ядра с градиентом электрического поля и возможен лишь для ядер, имеющих несферическую форму. Квадрупольное взаимодействие приводит не к сдвигу ядерных уровней, а к их расщеплению на определенное число подуровней. Энергия ядерных подуровней, возникающих в результате взаимодействия квадрупольного момента Q с градиентом электрического поля q, определяется выражением

$$E_m = \frac{e^2 q Q}{4I(2I-1)} \left[3m_I^2 - I(I+1) \right] \left(1 + \frac{\eta^2}{3} \right)^{1/2} \tag{3}$$

где $e^2 q Q$ — константа квадрупольного взаимодействия ядра, m — возможные проекции полного момента на ось z, η — параметр асимметрии градиента электрического поля ГЭП.

Как видно, в формуле фигурирует лишь квадрат проекции, поэтому одинаковым по модулю, но различным по знаку, проекциям полного момента соответствуют одинаковые подуровни.

Существуют два основных источника ГЭП:

- 1. заряды ионов, окружающих мессбауэровское ядро в кристаллической решетке
- 2. частично заполненные валентные орбитали мессбауэровского атома.

Рис. 3. Мессбауэровский спектр квадрупольного расщепления

Градиент электрического поля (или постоянная квадрупольного взаимодействия) является важной характеристикой электронной структуры твердых тел, в связи с чем исследование электрического квадрупольного взаимодействия имеет в физике твердого тела, химии, биологии такое же значение, как и измерение изомерного сдвига. С точки зрения ядерной физики большой интерес представляет определение квадрупольных моментов ядерных уровней. Точность определения Q зависит от точности расчета градиента электрического поля. Если квадрупольное расщепление присутствует как для возбужденного, так и для основного состояния ядра, можно найти отношение квадрупольных моментов двух ядерных уровней. Точность определения данного отношения не зависит от возможности расчета градиента электрического поля.

3.3. Магнитная сверхтонкая структура

Наиболее известной частью сверхтонкой структуры является магнитная сверхтонкая структура, обусловленная взаимодействием дипольного магнитного момента ядра с магнитным полем на ядре. Гамильтониан взаимодействия имеет вид:

$$H = -g\mu_n \vec{I} \cdot \vec{B} \tag{4}$$

А соответствующие уровни энергии:

$$E_m = -g\mu_n Bm_I,\tag{5}$$

где m = I, I - 1, ..., -I, g — ядерный *g*-фактор, μ_N — ядерный магнетон, \vec{I} — спин ядерного состояния, \vec{B} — магнитное поле, действующее на ядро.

Если величина расщепления превышает ширину мессбауэровской линии, в мессбауэровском спектре будет наблюдаться магнитная сверхтонкая структура, компоненты которой соответствуют γ -переходам между зеемановскими подуровнями возбужденного и основного состояний ядра. Число компонент будет равно числу переходов, разрешенных правилами отбора по магнитному квантовому числу:

$$|M| \le L \tag{6}$$

где $M = m_B - m_O$, т.е. изменение магнитного квантового числа, L — мультипольность γ -перехода. Причем магнитная сверхтонкая структура мессбауэровского спектра может наблюдаться как во внешнем магнитном поле, так и при взаимодействии ядра с магнитным сверхтонким полем в ферро- и антиферромагнетиках. Рассмотрим диаграмму уровней магнитного сверхтонкого расщепления в случае ⁵⁷Fe. Воспользовавшись формулой (5), нетрудно найти положение компонент магнитной сверхтон-кой структуры в мессбауэровском спектре.

Рис. 4. Мессбауэровский спектр магнитной сверхтонкой структуры

В случае магнитных дипольных переходов разрешенными являются те, для которых изменение магнитного квантового числа $\Delta m = 0$ или ± 1 .

В случае ⁵⁷Fe таких переходов будет шесть. В результате этого резонансное поглощение проявится при шести различных скоростях, и мессбауэровский спектр будет представлять собой секстет. Рассмотрение рисунка позволяет легко установить соответствие между различными переходами на диаграмме ядерных энергетических подуровней и отвечающими этим переходам пиками мессбауэровского секстета. Так, пик, находящийся при максимальной скорости (т. е. требующий наибольшей допплеровской добавки к энергии γ -кванта), будет обусловлен переходом с нижнего подуровня основного состояния (m = +1/2) на наиболее высокий энергетический подуровень возбужденного состояния (m = +3/2).

Расстояния между уровнями при переходе определяются произведениями g_0B и g_BB ($g_0 - g$ -фактор основного состояния, g_B — возбужденного). Таким образом, если из трех независимых переменных g_0 , g_B и Bкакое-либо одно известно, можно найти другие две. В большинстве случаев известной величиной является g-фактор основного состояния g_0 . Если измерения проводятся во внешнем магнитном поле, то известной величиной является B и, следовательно, могут быть определены g-факторы как основного, так и возбужденного состояний.

4. Итоги

Явления, которые возможно изучать и наблюдать с помощью эффекта Мессбауэра, далеко не ограничиваются приведенными выше. Он нашел применение в физике твердого тела,биологии, химии, с помощью расшифровки мессбауэровских спектров возможно идентифицировать состав вещества, тип связи между атомами в молекулах, особенности кристаллических структур и т. д. (подробнее [3]).

Литература

- 1. Вертхейм Г. Эффект Мессбауэра. М.: Мир. 1966, гл. 1–7.
- 2. Гинзбург В. Л. «Об экспериментальной проверке общей теории относительности» // УФН, т. 128, 435–458 (1979)
- П. Б. Фабричный, К. В. Похолок// Мессбауэровская спектроскопия и ее применение для химической диагностики неорганических материалов. // Курс лекций для студентов и аспирантов хим. факультета МГУ, 2012.