8. Связанные состояния протона

Протоны и нейтроны могут образовывать связанные состояния — атомные ядра. Число протонов в ядре определяет атомный номер химического элемента. В настоящее время получены атомные ядра 118 химических элементов. Условно атомные ядра можно разделить на две группы.

- Стабильные и долгоживущие ($T_{1/2} > 5 \cdot 10^8$ лет) атомные ядра. Всего их ≈ 300 .
- Радиоактивные ядра (*T*_{1/2} < 5 · 10⁸ лет). В настоящее время известно ≈ 3500 радиоактивных ядер. Общее число радиоактивных ядер может быть ≈ 7000.

На рис. 8.1 показана N-Z диаграмма атомных ядер. Каждому атомному ядру соответствует определённое положение на N-Z диаграмме. Стабильные и долгоживущие изотопы располагаются вблизи долины стабильности. Наиболее тяжелыми стабильными ядрами являются изотопы свинца (Z = 92), висмута (Z = 93). Для ядер долины стабильности характерно следующее соотношение между числом протонов Z и числом нейтронов N

$$\frac{N}{Z} \approx 1 + 0,015(N+Z)^{2/3}.$$

Изотопы — атомные ядра, имеющие одинаковое число протонов *Z* и разное число нейтронов *N*. Известно 7 изотопов водорода. В таблице 8.1 приведены изотопы водорода. Два легких изотопа водород ¹Н и дейтерий ²Н являются стабильными изотопами. Их процентное содержание в естественной смеси изотопов составляет 98,945% и 0,015% соответственно. Тритий ³Н распадается в результате β^{-} -распада

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \tilde{v}_{\rho}$$
.

Период полураспада трития ³Н $T_{1/2}(^{3}H) = 12,32$ лет.

Более тяжелые изотопы водорода ^{4–7}Н распадаются в результате сильного взаимодействия с испускание нейтронов. Характерное время жизни этих изотопов 10⁻²²–10⁻²⁷ секунд.

Таблица 8.1

Символ изотопа	Название	Z	N	Масса изотопа, МэВ	Спин J и четность Р изотопа J ^p	Период полураспада T _{1/2} [Г, МэВ]. Процентное содержание в естественной смеси изотопов	Моды распада изотопа	Удельная энергия связи є, МэВ	Энергия связи протона Е _р , МэВ	Энергия связи нейтрона E _n , МэВ
ΙΗ	протон	1	0	938,27	1⁄2+	стабилен (> 6,6 × 10 ³³ лет) 99,985%				
² H	дейтерий	1	1	1875,61	1+	стабилен 0,015%		1,1	2,2	2,2
³ H	тритий	1	2	2808,92	1/2+	12,32 лет	β–	2,8	8,5	6,3
⁴ H	квадий	1	3	3751,37	2-	1,39 × 10 ⁻²² с [4,6 МэВ]	n 100%	1,4	5,6	-2,9
⁵ H	пентий	1	4	4689,85	(1/2+)	$1,1 \times 10^{-22} \text{ c}$ [5,7 M3B]	n 100%	1,3	6,7	1,1
⁶ H	гексий	1	5	5630,35	2-	2,90 × 10 ⁻²² с [1,6 МэВ]	n 100%	1,0	5,7	-9,9
⁷ H	септий	1	6	6569,05	1/2+	2,3 × 10 ⁻²³ с [20 МэВ]	2n?	0,9	6,6	0,9

Изотопы водорода

Атом водорода

Атом водорода – связанная система, состоящая из положительно заряженного ядра – протона и отрицательного заряженного электрона. Размеры атома определяются размерами его электронной оболочки. Характерные размеры атомов $\approx 10^{-8}$ см. Будем считать, что электрон это заряженная частица, не имеющая внутренних квантовых чисел, находящаяся в кулоновском поле массивного протона. В этом случае потенциальная энергия электрона в кулоновском поле протона не зависит от направления радиуса–вектора, соединяющего электрон и протон, т. е. задача сферически-симметричная

$$U(r) = -\frac{e^2}{r}.$$
(8.1)

Возможные значения стационарных состояний электрона получаются при решении уравнения Шредингера с потенциалом (8.1). В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

$$-\frac{\hbar^2}{2M}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\psi}{\partial\theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\varphi^2}\right] + U(r)\psi = E\psi.$$

Связанные состояния электрона определяются соотношением

$$E_n = -2\pi\hbar c \,\frac{R}{n^2} = -\frac{13.6}{n^2} \,\,\mathrm{3B},\tag{8.2}$$

где n – главное квантовое число, определяющее энергии различных состояний электрона в атоме водорода (n = 1, 2, 3...), R – постоянная Ридберга (1.0974·10⁵ см⁻¹).

Волновая функция, описывающая стационарные состояния атома водорода, имеет вид

$$\psi(r,\,\theta,\,\varphi) = R_{nl}(r)\,Y_{lm}(\theta,\varphi)\,. \tag{8.3}$$

Радиальная волновая функция $R_{nl}(r)$ является решением уравнения (8.4) с потенциалом (8.1).

$$-\frac{\hbar^2}{2M}\frac{d^2}{dr^2} \Big[rR_{nl}(r) \Big] + \left[-\frac{e^2}{r} + \frac{\hbar^2 l(l+1)}{2Mr^2} \right] \Big[rR_{nl}(r) \Big] = E \Big[rR_{nl}(r) \Big].$$
(8.4)

Состояния атома водорода описываются радиальным *n*, орбитальным *l* и магнитным *m* квантовыми числами. Между главным квантовым числом *N*, используемым в атомной спектроскопии, и квантовыми числами *n* и *l* существует связь:

$$N = n + l. \tag{8.5}$$

Квантовые числа *n* (или *N*), *l* и *m* полностью характеризуют состояние электрона в атоме водорода в рассмотренной нами упрощенной модели. Состояние с N = 1 называется основным состоянием атома водорода. В этом состоянии система обладает наименьшей энергией. В атоме водорода энергия основного состояния $E_1 = -13.6$ эВ. Состояния с N = 2, 3, ...называются возбужденными состояниями. Энергия возбуждения E_{go36} , которую необходимо сообщить системе, чтобы она перешла из начального состояния N_i в конечное состояние N_f , определяется из соотношения

$$E_{BO3\bar{O}} = 2\pi\hbar cR \left(\frac{1}{N_i^2} - \frac{1}{N_f^2}\right) = 13.6 \left(\frac{1}{N_i^2} - \frac{1}{N_f^2}\right) \Rightarrow B.$$
(8.6)

Все состояния от N = 1 до $N = \infty$ являются связанными состояниями, так как имеют отрицательные энергии. Когда энергия электрона становится положительной (E > 0), система превращается в несвязанную и электрон становится свободным.

Рис. 8.2. Радиальное распределение вероятности | $R_{nl}(r)$ | $^2r^2dr$ нахождения электрона в кулоновском поле протона (атом водорода) в *s*, *p* и *d* состояниях. Расстояния даны в боровских радиусах $r_1 = \hbar^2/m_e e^2 \approx 0.529 \cdot 10^{-8}$ см.

Рис. 8.3. Орбиты модели атома Бора. Схема уровней атома водорода.

Переходы из состояний $N = 2, 3, ... \infty$ в состояние N = 1 образуют серию Лаймана. Переходы из состояния $N = 3, 4, ... \infty$ в состояние N = 2 - серию Бальмера. Переходы между состояниями с отрицательной энергией (E < 0) приводят к образованию дискретного спектра.

Важной особенностью любой сферически симметричной системы является совпадение энергий некоторых состояний. Это явление носит название вырождения. Его характер зависит от конкретного вида потенциала U(r). В центральном потенциале энергия не зависит от квантового числа m. Поскольку $m = 0, \pm 1, \pm 2, \pm 3, ..., \pm l$, то для каждого орбитального момента l имеется 2l + 1 значений m. Все эти значения отвечают одной и той же энергии. Таким образом, число различных (в данном случае по m) квантовых уровней с совпадающей энергией, т.е. кратность вырождения, также равно 2l + 1. Обычно возникает дополнительное вырождение, обусловленное определенным комбинациям n и l.

$$N = 3 \frac{3}{3s} \frac{3p}{3p} \frac{3}{3d} \frac{3}{3s_{1/2}} \frac{3}{3} \frac{3$$

Рис 8.4. Схема уровней атома водорода:

а – без учёта спина электрона и спина ядра,

 δ – тонкое расщепление уровней, учитывающее спин электрона,

 в – сверхтонкое расщепление уровней, учитывающее взаимодействие магнитного момента электрона с магнитным моментом ядра. Положения уровней и величины их расщеплений даны не в масштабе. Уровни энергии электрона в атоме обозначают указанием квантовых чисел N и l. Так, при N = 1 имеется одно состояние 1s; при N = 2имеется два состояния 2s и 2p; при N = 3 есть состояния 3s, 3p, 3d и т.д.

До сих пор мы считали, что спин электрона равен нулю. Учтем теперь, что электрон имеет спин s = 1/2. Полный момент количества движения \vec{J} электрона будет определяться векторной суммой орбитального \vec{L} и спинового \vec{S} моментов $\vec{J} = \vec{L} + \vec{S}$.

При заданном значении орбитального момента *l* в атоме водорода возможно два состояния, различающихся значениями полного момента j = l + s = l + 1/2 = 3/2 и j = l - s = l - 1/2 = 1/2. Эти два значения различаются взаимными ориентациями орбитального и спинового векторов. Энергии электрона в состояниях l + 1/2 и l - 1/2 в кулоновском поле протона несколько отличаются, и вырождение по энергии состояний снимается. Это дополнительное этих взаимодействие носит название спин-орбитального *ls*-взаимодействия. С учетом снятия вырождения спектр низколежащих состояний атома водорода обогащается (тонкое расщепление уровней энергий). Вместо двух низших уровней водорода без учета спин-орбитального расщепления (основного 1s и первого возбужденного 2s2p (рис. 8.4, a)) с учетом этого расщепления их становится четыре (рис. 8.4, б). Квантовые характеристики этих уровней приведены в табл. 8.2.

Таблица 8.2

N	l	S	$j = l \pm s$	обозначение уровней
1	0	1/2	1/2	$1s_{1/2}$
2	0	1/2	1/2	$2s_{1/2}$
	1	1/2	1/2, 3/2	$2p_{1/2}, 2p_{3/2}$
3	0	1/2	1/2	$3s_{1/2}$
	1	1/2	1/2, 3/2	$3p_{1/2}, 3p_{3/2}$
	2	1/2	3/2, 5/2	$3d_{1/2}, 3d_{3/2}$

Квантовые характеристики электрона в низших состояниях атома водорода

Величину тонкого расщепления уровней ΔE получим из соотношения

$$\Delta E = 2\pi \hbar c R \frac{\alpha^2}{N^3} \frac{1}{(j+1/2)(j+3/2)}.$$

Для уровней $3p_{1/2}$, $3p_{3/2}$ N = 3, j = 1/2, $\Delta E = 1.3 \cdot 10^{-5}$ эВ.

Из точного решения релятивистского уравнения Дирака для электрона со спином s = 1/2 получается следующая зависимость энергии уровней атома водорода от квантовых чисел N и j

$$E_{Nj} = 2\pi \hbar c R \left[\frac{1}{N^2} - \frac{\alpha^2}{N^3} \left(\frac{1}{j+1/2} - \frac{3}{4N} \right) \right], \qquad (8.7)$$

где $\alpha = 1/137$ — постоянная тонкой структуры. Поправка в E_{Nj} не зависит от квантового числа *l*. Поэтому энергии состояний с одинаковыми *j* и разными *l* должны быть равны. Величина тонкого расщепления уровней при данном *N*:

$$\delta E_{j+1,j} = 2\pi \hbar c R \frac{\alpha^2}{N^3} \frac{1}{(j+1/2)(j+3/2)} = 7.2 \cdot 10^{-4} \frac{3B}{N^3(j+1/2)(j+3/2)}.$$

Величина расщепления уровня с N = 2 составляет $\approx 4,5 \cdot 10^{-5}$ эВ.

Учтем теперь, что ядро атома водорода – протон – также имеет собственный момент – спин s = 1/2. Это тоже изменяет взаимодействие электрона С протоном, так как возникает дополнительное взаимодействие магнитного момента протона, вызванного наличием у него спина, с магнитным полем электрона. Величина ЭТОГО взаимодействия зависит от взаимной ориентации спинового момента протона и полного момента электрона. Таким образом, возникает еще один тип расщепления уровней атома, называемого сверхтонким, так как его величина существенно меньше тонкого расщепления. Сверхтонкое расщепление наблюдается уже для основного состояния (N = 1, l = 0). Переход между двумя подуровнями сверхтонкого расщепления основного состояния водорода приводит к излучению с длиной волны $\lambda = 21$ см (частота излучения 1420 МГц). С помощью этого излучения обычно регистрируется межзвездный водород во Вселенной.

Существует ещё один вид расщепления уровней атома водорода, который сыграл историческую роль в становлении квантовой электродинамики, — расщепление уровней $2s_{1/2}$ и $2p_{1/2}$, называемое лэмбовским сдвигом. Это расщепление, впервые наблюдавшееся У. Лэмбом в 1947 г., обусловлено взаимодействием электрона с вакуумом и доказывает, что электрон окружен облаком виртуальных фотонов и e^-e^+ -пар (рис. 8.5, 8.6).

Рис. 8.5. Диаграммы, описывающие распространение свободного электрона.

Рис. 8.6. Экранировка электрического заряда в КЭД

В КЭД электрон может на короткое время и на малых расстояниях порождать виртуальные фотоны, а через них e^-e^+ -пары. Поэтому свободный электрон должен изображаться не одиночной линией, отвечающей голому (дираковскому) электрону, а бесконечной суммой усложняющихся диаграмм (рис. 8.5).

Электрон как бы «одет в шубу» из виртуальных e^-e^+ -пар и фотонов. Так как позитроны притягиваются к «родительскому» электрону, они располагаются ближе к нему, чем виртуальные электроны, испытывающие отталкивание. Т.е. электрон окружён облаком виртуальных зарядов, которое поляризовано так, что

положительные заряды располагаются ближе к электрону (рис. 3.33). Это эквивалентно экранированию отрицательного заряда в диэлектрической среде. Роль такой среды в данном случае выполняет вакуум КЭД.

Доказательства того, что электрон окружён облаком виртуальных фотонов и e^-e^+ -пар было получено в прецизионных измерениях спектра атома водорода, выполненного У. Лэмбом, и магнитного момента электрона, осуществлённых П. Кашем в 1947 г. Наблюдавшийся в эксперименте сдвиг по энергии уровней атома водорода (*лэмбовский сдвиг*) и небольшое (на 0.1%) увеличение магнитного момента электрона по сравнению с магнетоном Бора полностью подтвердили расчёты в рамках КЭД, учитывающие виртуальные процессы, приводящие к *поляризации вакуума*.

Протоний

При столкновении медленного антипротона с атомом водорода происходит образование атома, состоящего из протона и антипротона. Такой атом называется протоний. Протоний представляет собой водородоподобный атом, отличающийся от атома водорода тем, что вместо электрона в нем находится антипротон. В этом случае приведенная масса протония $M(p\overline{p})$ равна

$$M(p\overline{p}) = \frac{M(p)}{1 + \frac{M(\overline{p})}{M(p)}} = \frac{M(p)}{2},$$

где M(p) — масса протона.

Характеристики протония можно получить из характеристик атома водорода, учтя приведенную массу протония.

Радиус боровской орбиты протония R

$$R(p\overline{p}) = \frac{\hbar}{M(p\overline{p}) \cdot c} \frac{n^2}{\alpha} = 0,576 \cdot 10^{-11} n^2 \text{ cm} = \frac{1}{918} R(H)$$

в ≈ 920 раз меньше радиуса атома водорода R(H).

Энергия возбужденных состояний протония $E(p\bar{p})$

$$E(p\overline{p}) = -M(p\overline{p})c^{2}\frac{\alpha^{2}}{2n^{2}} = \frac{M(p)}{2m_{e}}\frac{Ry}{n^{2}} = -\frac{12,47}{n^{2}}$$
 кэB,

Ry = 13,60569253 эВ — постоянная Ридберга. Энергия связи основного состояния атома протония n = 1 составляет -12,47 кэВ.

Соединения водорода с кислородом и углеродом

Водород является одним из наиболее распространенных химических элементов. Его масса составляет $\approx 1\%$ массы атмосферы, гидросферы и литосферы Земли. Основная масса водорода находится в связанном состоянии. Так, например, водород составляет $\approx 11\%$ массы воды. Соединения водорода и углерода входят в состав всех живых организмов, входят в состав нефти и различных природных газов. Атом водорода может либо отдавать свой единственный электрон с образованием положительного иона (протон), либо присоединять один электрон, переходя в отрицательный ион водорода.

Расположение атомов в молекуле воды показано на рис. 8.7.

Рис. 8.7. Расположение атомов кислорода О и водорода Н в молекуле воды.

Оба атома водорода в молекуле воды расположены по одну сторону от атома кислорода. Расстояние между атомами кислорода и водорода 97 нм.

Кроме воды известно другое соединение водорода с кислородом – перекись водорода (рис. 8.8).

Рис. 8.8. Расположение атомов кислорода О и водорода Н в молекуле перекиси водорода.

Углерод не является самым распространенным химическим элементом. Из общего числа атомов земной коры содержание углерода составляет 0,14%. Однако в настоящее время известно свыше четырех миллионов соединений углерода. Многообразие соединений углерода по сравнению с другими элементами обусловлено особенностями атомов углерода. Важнейшая — способность к образованию прочных связей атомов углерода друг с другом. На рис. 8.9 показана схема образования углеродной цепи.

Рис. 8.9. Цепочка углеродных соединений.

Для кислорода известно только два водородных соединения H_2O и H_2O_2 , в то время как в случае углерода, кроме метана CH_4 , могут быть получены этан C_2H_6 , пропан C_3H_8 , бутан C_4H_{10} и др.