ИССЛЕДОВАНИЕ МОРФОЛОГИИ ПОВЕРХНОСТИ ПОЛИВИНИЛТРИМЕТИЛСИЛАНА ПРИ ОБРАБОТКЕ КИСЛОРОДНОЙ ПЛАЗМОЙ

А.И.Акишин¹, В.П.Бабаев¹, Н.В.Белова², Г.Г.Бондаренко², А.И.Гайдар², Л.С.Новиков¹, В.Н.Черник¹ $^{'}$ *НИИЯФ МГУ*, ²*НИИПМТ*

Morphology, elemental consistence and mass losses of polyvinylthreemetilsylan under oxygen plasma irradiation with 20 eV ions have been investigated.

Органические полимеры наиболее распространенными являются материалами на поверхности современных космических аппаратов (КА). Они используются в виде пленок терморегулирующих покрытий и слоев экранновакуумной термоизоляции, в виде волокон в нитях и тканях чехлов и экранов, в матрицы композиционных качестве входят В состав материалов, терморегулирующих покрытий, красок и клеев. Эластомерные прокладки являются уплотнительными элементами, обеспечивающими герметичность внутренних отсеков КА. Углеродные волокна служат армирующим компонентом конструкционных углепластов, графиты используются в качестве терморегулирующих черных покрытий И твердой пигментов смазки. Эксплуатация органических полимеров на околоземных орбитах показала низкую стойкость большинства типов к атомарному кислороду (АК) набегающего потока. Поэтому интенсивно ведутся разработки полимеров, обладающих высокой стойкостью к воздействию. Как показали натурные эксперименты и лабораторные исследования высокую стойкость к АК проявляют кремнийорганические полимеры [1]. К этому классу полимеров поливинилтриметилсилан (ПВТМС)[2]. Он представляет собой относится соединение CH₂-CH-Si-3CH₃

В настоящее время ПВТМС как нанопористый стеклообразный материал нашел широкое применение при изготовлении промышленных селективнопроницаемых мембран, которые широко используются при разделении углеводородов (газов, газообразных продуктов), получаемых при переработке нефти [2]. Возможно, что ПВТМС может найти также применение в космической технологии. Важным методом, влияющим на основные характеристики таких мембран, является их модификация в процессе обработки их поверхности с помощью низкотемпературной плазмы. В настоящей работе ПВТМС подвергался облучению в потоке кислородной плазмы в вакууме с генерируемой магнитоплазмодинамическим энергией ионов \sim 20 эΒ, ускорителем кислородной плазмы [3].

Методика экспериментов включала подготовку образцов ПВТМС, их облучение потоком плазмы АК одновременно с образцами-свидетелями, измерение потери массы и толщины облученных образцов, исследование свойств исходных и облученных образцов, структуры и свойств их поверхности. Для исследований использовались образцы ПВТМС в виде пластин размером 200*200 мм толщиной около 1 мм.

Облучение образцов АК проводилось на вакуумном имитационном стенде с плазменно-пучковым источником атомарного кислорода [3]. В данном источнике для формирования плазменных потоков кислорода с низкой энергией используется схема магнитоплазмодинамического ускорителя с внешним магнитным полем, модифицированная для функционирования в окислительной плазмообразующей среде [3]. Струя ускоренной плазмы кислорода, падающая на образцы, состоял из ионов, атомов и молекул кислорода со среднемассовой скоростью 16 км/с (энергия ионов 20 эВ) и плотностью

 $(2,5-3,5)*10^{16}$ см⁻²*с⁻¹. Поскольку при столкновении с поверхностью быстрые молекулы потока диссоциируют, а ионы нейтрализуются, то в результате на материал воздействуют атомы, имеющие среднюю скорость 16 км/с.

Рис.1. Фото поверхности ПВТМС, полученная на РЭМ до облучения

Рис.2 Фото поверхности ПВТМС, полученная на РЭМ после облучения кислородной плазмой на плазмотроне

Облучение проводилось несколькими циклами для исследования кинетики потери массы образцами. В каждом цикле взвешивание образцов ПВТМС и полиимидного образца-свидетеля производилось на аналитических весах АДВ-200 с ценой деления 0,1 мг вне камеры до, и после обработки АК.

Поверхность образцов до и после облучения различными флюенсами частиц с оценкой их элементного состава изучали методом электроннозондового рентгеноспектрального микроанализа и получением микрофотографий с помощью растрового электронного микроскопа (РЭМ) Zeiss «EVO-40» без специальной подготовки поверхности

На рис.1 приведена фотография поверхности ПВТМС, полученная на РЭМ до облучения. На рис.2 приведена фотография поверхности ПВТМС, полученная на РЭМ, после облучения в струе кислородной плазмы с энергией ионов около 20 эВ, эквивалентный флюенс, приведенный к 5эВ 4х10²¹част/см².

На рис.3 приведен спектр элементного анализа ПВТМС до облучения, полученный с помощью электроннозондового рентгеноского микроанализа. На рис.4 показан спектр элементного анализа ПВТМС после облучения в струе кислородной плазмы с энергией ионов 20 эВ, эквивалентный флюенс, приведенный к 5эВ $4x10^{21}$ част/см². Коэффициенты эрозии, определенные по результатам данных экспериментов составляют для ПВТМС $R_e = 0.05 \ 10^{-24} \ r/O$,

количества С. При этом остается неизменным соотношение Si/O. Это можно объяснить образованием летучих оксидов углерода, уносящих (С с поверхности, или формированием пленки оксидов кремния, защищающий нижележащие слои полимера от травления. Вследствие этого процесса скорость уноса массы по мере увеличения флюенса уменьшается.

Этот результат согласуется с представлениями о защитном эффекте кремнийорганических покрытий, обусловленным конверсией кремниевой составляющей полимера в оксид при воздействии АК [4,5]. Элементный анализ облученного образца ПВТМС по сравнению с необлученным показал снижение углерода на 15 ат.%. Появление фтора в спектре связано с наличием в камере тефлоновых материалов. Наличие в спектре кислорода можно объяснить наличием адсорбированной воды и кислорода в пористой структуре ПВТМС.

- 1. А.И Акишин, Л.С.Новиков, В.НЧерник. Воздействие на материалы и элементы оборудования космических аппаратов вакуума, частиц ионосферной плазмы и солнечного ультрафиолетового излучения. Энциклопедия «Новые наукоемкие технологии в технике». Т.17. Под ред. Новикова Л.С., Панасюка М.И. М.: ЭНЦИТЕХ: 2000, с.100.
- 2. С.Г.Дургарьян, В.Г.Филимонова. Синтез и свойства блок-сополимеров полидиметилсилоксан-поливинилтриметилсилан // Высокомолекулярные соединения 1986, т. XXVIII, №2, с.329-333
- 3. А.И.Акишин, Л.С.Новиков, В.Н.Черник. Применение ускорителя кислородной плазмы для исследования распыления материалов // Поверхность. 2004, №4, с.52-56
- 4. В.Н.Черник, С.Ф.Наумов, С.А.Демидов, С.П.Соколова, В.И.Свечкин. Исследования полиимидных пленок с защитными покрытиями для космических аппаратов //

Перспективные материалы. 2000. № 6. С. 32-36.

5. J. Kleiman, Z. Iskanderova, Technological aspects of protection of polymers and carbon-based materials in space // Proc. of 8th Int. Symp. on Materials in Space Environment, Arcashon, France 5-9 June 2000, ONERA