METHODS OF IMPACT EXPERIMENT WITH AL₂O₃ AND Fe MICROPARTICLES

Ye Yicong¹, Wang Libo¹, S.A. Bednyakov², S.V. Zaytsev², L.S. Novikov²

1 Tsinghua University, Peking, 100084 China,

E-mail: yeyc@mails.thu.edu.cn

2 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119992 Russia, E-mail: novikov@sinp.msu.ru

 Al_2O_3 microparticles and Fe microparticles are investigated under optical microscope, and their behaviors in the acceleration experiment are also examined. It is concluded that, although Fe is better charged with higher *q* than Al_2O_3 , however, Al_2O_3 achieves a higher speed because it is lighter and hollow.

1 Introduction

 Al_2O_3 is chosen as the material used in acceleration and impact experiments for the good character – hollow sphere with diameter $1\div 2\mu m$ and wall thickness h=150÷300nm, which makes it very suitable for high-speed impact experiment, because special substance can be filled into the inner part of the sphere and various phenomenon can be achieved. Besides, the tensile strength of Al_2O_3 is high up to ~ 10^9Pa . In this paper, the basic form of Al_2O_3 microparticles and their behaviors in the acceleration experiment are examined, comparing with Fe particles.

2 Experimental methods

The forms of the particles were determined under optical microscope named AXIO Imager.A1m, produced by Carl Zeiss Company. The particles were accelerated in microparticle injector of MSU and their velocities and charges were measured with an A/D system, which are shown in Figure 1.

Figure 1 Equipment used in the acceleration experiments

3 Results and analysis

3.1 Particle size

The forms of Al_2O_3 and Fe particles were examined under optical microscope (see Figure 2), and their diameter distributions were investigated using the software supplied with the microscope (see Figure 3). Although Al_2O_3 is much bigger than Fe, but it is much lighter (see Table 1). This is because not only Al_2O_3 has a lower density, but also it is hollow, while Fe particle is solid sphere.

(a) Al_2O_3 particles

(b) Fe particles

(a) Al_2O_3 (b) Fe Figure 3 Size distribution of Al_2O_3 and Fe particles

Table 1	Size	and mass	contrast	between	Al_2O_3	particles	and Fe	particles
---------	------	----------	----------	---------	-----------	-----------	--------	-----------

Particles	Al	Fe	
Sample number	204	204	230
Wall thickness h (nm)	300	150	-
Average diameter (10 ⁻⁶ m)	1.	69	1.18
Average mass (10 ⁻¹⁴ kg)	0.747	0.444	1.07

3.2 Results of acceleration experiments3.2.1 Determination of the number of detectors

The parameters of the separate accelerated particles were measured with the help of the two detectors K1 and K2 shown in Figure 1. The particle charge was determined using the amplitude of pulses induced on detectors (Figure 4).

Figure 4 Oscillograms of signals from two ring gauges K1 (upper) and K2 (lower).

The particle velocity was determined using time of the particle flight either just in K1 (t_1) or between K1 and K2 (t_1 + t_2). The results are compared in Table 2, and it is

obvious that there are no big difference between using both of the two detectors and using only one detector. It is determined that only one detector is enough for measuring the velocities and charges of particles for the rest work. (It is true if velocities are not too large.)

Table 2 Contrast between two detectors and one detector								
Item	2 detectors	1 detector						
Sample number	64	64						
Average speed [km/s]	0.3145863	0.3184315						
Standard deviation	0.1254	0.1410						
Standard deviation of	0.0157	0.0176						
average								
Believe probability	90%	90%						
Confidence	0.0256	0.0289						
Result	0.3146±0.0256	0.3184 ± 0.0289						

Table ? Contrast between two detectors and one detector

3.2.2 Velocity distribution

The behaviors of Al_2O_3 and Fe particles in the acceleration experiments were investigated.

Figure 5 Velocity distributions of Al₂O₃ particles and Fe particles under different voltages

Information for calculating the velocity of particles was achieved by oscillograph. Through statistical calculation, the velocity distributions of Al₂O₃ and Fe under different voltages are shown in Figure 5 and Table 3. It is obvious that, with the acceleration voltage increasing, the average speed of Al₂O₃ is increased, and under the close voltage, Al₂O₃ particle has a higher average speed than Fe particle. Also, we can use higher voltage with Al_2O_3 than Fe without discharges in vaccum chamber.

aijjereni volidges									
Particles		Al_2O_3			Fe				
Acceleration voltage	10.8	18.2	20.6	13.2	16.6	20.6			
[kV]									
Sample number	56	64	59	63	57	59			
Average speed [km/s]	0.245	0.315	0.361	0.20	0.22	0.28			
				2	4	5			

Table 3 Comparison of average velocity of Al₂O₃ with Fe under different voltages

3.2.3 Charge distribution

With the oscillograph data of Al_2O_3 and Fe particles, the charge distribution can be calculated, using formula q = kA, where A is the output voltage (see Figure 4) and k is the known (we used calibration of amplifier) coefficient as $1.9*10^{-13}$ [C/V]. The results are shown both in Figure 6 and Table 3.

Figure 6 Charge distributions of Al₂O₃ and Fe particles under different voltages

We can see that Fe particles have higher charges than Al_2O_3 . Possible reason – that Fe particle is metallic, which is better for charging than non-metallic Al_2O_3 .

Table 4 Comparison of charge distribution of Al2O3 with Feunder different voltages

	33		0			
Particles		Al_2O_3			Fe	
Acceleration voltage [kV]	10.8	18.2	20.6	13.2	16.6	20.6
Sample number	56	64	59	63	57	59
Average charge [10 ⁻¹⁴ C]	2.02	3.57	2.64	3.99	3.82	4.01

3.2.4 Specific charge of the particles

The specific charge of the particles q/m can be achieved using this formula: $qU=mv^2/2$, and the results are shown in Figure 7 and Table 5.

(d) U=13.2kV Fe (e) U=16.6kV Fe (f) U=20.6kV Fe Figure 7 The value of q/m of Al₂O₃ and Fe particles under different voltages

	ne s companison of quit	vanie oj	111203		unaci	aijjeren	ii vonage	
_	Particles	Al_2O_3			Fe			
_	Acceleration voltage	10.8	18.2	20.6	13.2	16.6	20.6	
	[kV]							
	Sample number	56	64	59	63	57	59	
	q/m [C/kg]	3.79	3.14	4.07	2.14	2.40	2.68	

Table 5 Comparison	of q/m value	of Al_2O_3 with	Fe under d	different voltage	es

3.5 Analysis

The results achieved in the experiments, together with theoretical calculations, are summarized in Table 6 and Figure 8, in which the obtained relation of the particle parameters with the voltage on the needle is shown.

The theoretical maximum speeds of particles were calculated using formula [2]:

 $v_{\text{max}} = (12\varepsilon_0 E_{\text{max}} U d^{-1} \rho^{-1})^{1/2} = 1.031 \cdot 10^{-5} (E_{\text{max}} U d^{-1} \rho^{-1})^{1/2} = 0.326 (U d^{-1} \rho^{-1})^{1/2} [\text{m/s}]$

Where ε_0 – electric constant; d,ρ – diameter and density of particles, repectively; E_{max} – maximum tension of electric field with a value of 10⁹ V/m in our condition, U – potential on the accelaration electrode.

The theoretical maximum charges of particles were calculated using formula[3]:

$$q_{\text{max}} = \pi \varepsilon_0 d^2 E_{\text{max}} = 2.780 \cdot 10^{-11} E_{\text{max}} d^2 = 0.0278 d^2 [\text{C}]$$

Where d – diameter of particle, E_{max} – maximum tension of electric field, 10⁹ V/m. The specific charge of particle was calculated using formula:

$$q/m = v^2/2U$$

Where v – velocity of particles, U - potential on the accelaration electrode.

It is visible that, Fe particles have experimental charge values closer to theoretical maximum than Al₂O₃. Although Fe is better charged with higher q than Al₂O₃, however, Al₂O₃ achieves a higher q/m and a higher speed because it is lighter and hollow.

		Al_2O_3			Fe	
Acceleration voltage [kV]	10.8	18.2	20.6	13.2	16.6	20.6
Experimental average speed	0.24	0.31	0.36	0.20	0.22	0.28
v_{exp} [km/s]	5	5	0	2	4	5
Theoretical maximum speed	0.44	0.58	0.61	0.40	0.45	0.51
v_{max} [km/s]	9	2	9	8	8	0
	0.57	0.54	0.58	0.49	0.48	0.55
V _{exp} /V _{max}	7	1	2	5	9	9
Experimental average	2.02	3.57	2.64	3.99	3.82	4.01
charge $[10^{-14}C]$						
Theoretical maximum		8.60			4.52	
charge $[10^{-14}C]$						
Experimental average mass	2.26	2.18	6.80	7.82	10.7	8.28
$[10^{-14} \text{kg}]$						
Specific charge of the	3.79	3.14	4.07	2.14	2.40	2.68
particles <i>q/m</i> [C/kg]						

Table 6 Behaviors of Al₂O₃ and Fe particles under different acceleration voltage

Figure 8 Particle parameters as function of the voltage on the needle

4 Conclusions

As known, metal particles are more easily charged than non-metals. In this work, Fe is better charged with higher q than Al₂O₃, which is non-metal. However, the

hollow character of Al_2O_3 makes it much lighter than Fe, although Fe particle is smaller. As a result, Al_2O_3 has a higher specific charge q/m than Fe, and accordingly, the velocities achieved on Al_2O_3 particles are higher. But it is still not good enough. The size of Al_2O_3 is too large to achieve higher velocity.

 Novikov L.S. High-speed impact in cosmos, Moscow, Russia, 2003 (in Russian)
Novikov L.S., Voronov K.E., Semkin N.D. et al. Measurement of solid microparticle flux in geosynchronous orbit. In: ESA Symp. Proc. on Environment Modelling for Space-based Applications, ESTEC, Noordwiji, NL, 18-20 September 1996 (SP-392), pp. 343-348
Novikov L.S., Bednyakov S.A., Soloviev G.G., Ermolaev I.K., Pilyugin N.N. Laboratory modeling of space particles impact on materials and structures. In: Proc. of the 4th Europ. Conf. on Space Debris, Darmstadt, Germany, 18-20 April 2005 (ESA SP-587), pp. 697-700