РАЗРАБОТКА МЕТОДИКИ ИДЕНТИФИКАЦИИ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ С, N₂, O₂.

А.Н. Ермаков ОЭПВАЯ, НИИЯФ МГУ им. М.В. Ломоносова <u>a_ermak1978@mail.ru</u>

The chemical elements C, N and O identification method efficiency was evaluated. Numerical simulations were carried out by GEANT 3.0 subroutines including Monte-Carlo method.

Введение

Данный доклад посвящен задаче определения количественного содержания элементов C, N и O в исследуемом образце вещества. Рассматриваемая проблема интересна как с прикладной точки зрения так и с позиции фундаментальной ядерной физики. Суть предлагаемой методики заключается в том, что для искомых химических элементов существуют так называемые маркерные фотоядерные реакции. Основные параметры продуктов данных реакций (например, спектр тормозного излучения и период полураспада получаемых β -активных ядер) являются уникальными. Поэтому если достоверно их измерить, можно будет говорить о решении поставленной задачи.

Основным элементом предлагаемой методики является действующий импульсный разрезной микротрон с максимальной энергией электронов 70 МэВ, созданный в НИИЯФ МГУ [1]. Основная его особенность, как источника тормозного излучения, заключается в том, что система вывода пучка ускорителя позволяет изменять верхнюю границу спектра гамма-квантов с шагом 5 МэВ в диапазоне 15 – 70 МэВ. Это дает возможность заниматься измерениями выходов и сечений фотоядерных реакций на изотопах указанных химических элементов.

1. Маркерные реакции.

На рис. 1 показан фрагмент таблицы изотопов [2], руководствуясь которой выберем маркерные реакции. Время работы регистрирующей аппаратуры определяется формулой

$$t_{u_{3M}} = 1/f_{nom} - \tau_{u_{MR}}, \qquad (1)$$

где f_{noem} - частота следования импульсов тока пучка электронов, τ_{umn} длительность импульса тока пучка. Например, для $f_{noem} = 10$ Гц и $\tau_{umn} = 10$ мксек имеем $t_{usm} \approx 100$ мсек. В качестве реакций выберем те, в результате которых получаются изотопы с периодом полураспада меньшим или сравнимым с временем t_{usm} (таблица 1). Каналы распадов образующихся изотопов показаны на рис 2 [2]. Рассмотрим реакцию ${}^{14}N(\gamma, 2n){}^{12}N$. В результате данной реакции мы имеем позитронный источник ¹² N с максимальной энергией позитронов 17,3 МэВ и периодом полураспада 11 мсек.

Химический элемент	Маркерная	Период полураспада		
	реакция	дочернего ядра,		
		мсек		
C	$^{12}C(\gamma, 3n)^9C$	126.5		
L	$^{13}C(\gamma, p)^{12}B$	20.2		
	$^{14}N(\gamma,2n)^{12}N$	11		
7	$^{14}N(\gamma, 2p)^{12}B$	20.2		
N	$^{15}N(\gamma, 3n)^{12}N$	11		
	$^{15}N(\gamma, 2p)^{13}B$	17.36		
0	$^{16}O(\gamma, 3n)^{13}O$	8.58		
0	$^{16}O(\gamma, 3p)^{13}B$	17.36		

Таблица 1. Маркерные реакции.

	/	1 -188.12° 100.020		10 10	40 koV	61 10 -	100 77 m		11 00 -
	9	-1	(2-)	(1/2+)	0-	5/2+	1+	1/2+	2+
		18.9984032	n	n	n	EC	EC	100	ß-
2	·218.79°	012	013	014	015	016	017	018	010
6	-182.95° -118.56°	0.40 MeV	8.58 ms	70.606 s	122.24 s	010	017	010	26.91 s
	-2	0+	(3/2-)	0+	1/2-	0+	5/2+	0+	5/2+
	0.078%	2p	ECp	EC	EC	99.762	0.038	0.200	β-
10	N10	N11	N12	N13	N14	N15	N16	N17	N18
0		740 keV	11.000 ms	9.965 m			7.13 s	4.173 s	624 ms
'		1/2+	1+	1/2-	1+	1/2-	2-	1/2-	1-
		р	EC3α	EC	99.634	0.366	β-α	βn	β-n,β-α,
	C9	C10	C11	C12	C13	C14	C15	C16	C17
	126.5 ms	19.255 s	20.39 m	-		5730 y	2.449 s	0.747 s	193 ms
	(3/2-)	0+	3/2-	0+	1/2-	0+	1/2+	0+	
	ECp,ECp20	EC	EC	98.90	1.10	β-	β-	β-n	β-n
	B8	B9	B10	B11	B12	B13	B14	B15	B16
	770 ms	0.54 keV	_		20.20 ms	17.36 ms	13.8 ms	10.5 ms	200 Ps
	2+	3/2-	3+	3/2-	1+	3/2-	2-		(0-)
	EC2a	2pα	19.9	80.1	β-3α	β-n	β-	β-	n
	Be7	Be8	Be9	Be10	Bell	Bel2	Bel3	Bel4	
	53.29 d	6.8 eV		1.51E+6 y	13.81 s	23.6 ms	0.9 MeV	4.35 ms	
	3/2-	0+	3/2-	0+	1/2+	0+	(1/2,5/2)+	0+	
	EC	2α	100	β-	β-α	β-	n	β ⁻ n,β ⁻ 2n,	
	T : 6	T	T :0	T :0	T :10	T 211	T 214		-

Рис. 1. Фрагмент таблицы изотопов Z от 4 до 8.

Рис. 2. Каналы распадов изотопов, образующихся в результате маркерных реакций.

3. Моделирование эксперимента.

Далее задача решается в два этапа. Сначала проводится расчет относительного числа β^+ -активных ядер ¹² N в заданной геометрии облучения образца. Затем выясняем, сколько полезных событий будет зарегистрировано детектирующей системой.

Рис. 3. Геометрия расчета зависимости спектра гамма-излучения от толщины тормозной мишени.

На рис. З показана геометрия расчетов тормозного спектра при его оптимизации за счет изменения толщины вольфрамовой тормозной мишени. Рис. 4 показывает поведение относительного выхода тормозных χ -квантов в зависимости от их энергии и от радиуса облучаемой мишени.

Рис. 4. Относительный выход тормозных λ*-квантов в зависимости от энергии γ-квантов* и от радиуса пучка.

Количество радиоактивных изотопов, образующихся в результате фотоядерных реакций, определяется выражением

$$N(t) = \frac{\alpha}{\lambda} \int_{0}^{T} N_{\gamma}(\omega, T) \sigma(\omega) d\omega \left\{ 1 - e^{-\lambda t_{o\delta\pi}} \right\} e^{-\lambda t}, \qquad (2)$$

где $\alpha = \frac{\rho \Delta x}{M} N_A$ - число ядер мишени, приходящихся на 1 $c M^2$, ρ, M - плотность и молярная масса, облучаемого изотопа, Δx - толщина мишени, N_A - число Авогадро, λ - постоянная распада, производимого изотопа, $t_{o\delta \pi}$ - время облучения, t - момент времени измерения, $N_{\gamma}(\omega, T)$ - спектральная функция тормозного гамма-излучения с максимальной энергией T, которая и представлена на рис. 4. Результаты расчетов количества получаемых позитронов представлены на рис. 5.

Рис. 5. Зависимость количества позитронов на 1 (грамм*мА) азота от расстояния между облучаемой мишенью и гамма-конвентором. Радиус мишени 3,5 см.. Точечный пучок электронов.

Теперь проведем расчет количества зарегистрированных полезных событий. Форма непрерывного спектра позитронов при бета-распаде описывается выражением

$$N(T_e) = \frac{C}{c^5} \left(T_e^2 + 2T_e m_e c^2 \right)^{\frac{1}{2}} \left(Q - T_e^2 \right)^2 \left(T_e + m_e c^2 \right), \tag{3}$$

где T_e - энергия вылетающих позитронов, Q - энергия бета-распада. В выражении (3) не учитывается взаимодействие вылетающих частиц с дочерним ядром. Вероятность того, что энергия вылетающей частицы $T_e < T$ определяется выражением:

$$P(T_e < T) = \xi = \int_0^T P(T_e) dT_e = K \cdot \int_0^T (T_e^2 + 2T_e m_e c^2)^{\frac{1}{2}} (Q - T_e)^2 (T_e + m_e c^2) dT_e = K \cdot \xi', \quad (8)$$

где ξ и ξ' случайные величины. Поскольку ξ и ξ' - равнозначно случайные числа, то для разыгрывания случайного значения энергии бета-частицы T_e нами используется функция плотности вероятности следующего вида:

$$P_{\xi}(T_e) = \left(T_e^2 + 2T_e m_e c^2\right)^{\frac{1}{2}} \left(Q - T_e\right)^2 \left(T_e + m_e c^2\right).$$
(9)

Для вычисления T_e использовалась функция **GCIN** библиотеки IMSL, входными параметрами которой являются значения $P_{\xi}(T_e)$ в интервале энергий от 0 до энергии бета-распада Q и значение вероятности ξ .

Разыгрывание направления вылета частиц проводится по формулам:

$$\psi = 2\pi\gamma_1 \operatorname{H} \cos \varphi = 1 - 2\gamma_2, \qquad (10)$$

где γ_1 и γ_2 случайные числа. Пользуясь полученными выражениями (9) и (10) определим эффективность регистрации излучения позитронного источника ¹² N

детектором с кристаллом NaI. Данный расчет (рис. 6) как и все предыдущие проведем с использованием библиотек GEANT 3.0.

Рис. 6. Эффективность регистрации излучения позитронного источника с максимальной энергией 17,38 МэВ кристаллом NaI от расстояния до мишени. Размеры кристалла: диаметр 85 мм и высота 90 мм.

И в заключении, объединяя данные на рис.5 и рис. 6, получим искомое число полезных событий. На рис. 7 представлены расчетные кривые распада изотопа ^{12}N , который содержится в 132 г аммиачной селитры после 200 импульсов облучения. Длительность импульса 6 мксек, частота повторения 10 Гц. Из рис. 7 видно, что если расчеты верны, то эффект превышает детектируемый фон ускоритель почти на два порядка при импульсном токе ускорителя 1мА.

Рис. 7. Сравнение кривых распада. 132 г аммиачной селитры. Импульсный ток пучка – 1 мА. 200 импульсов ускорителя.

Заключение.

Как следует из приведенных выше расчетов, предлагаемый метод идентификации химических элементов *C*, *N* и *O* даже при достаточно грубых предположениях дает обнадеживающий результат. В настоящее время ведется подготовка к проведению эксперимента на пучке импульсного разрезного микротрона с энергией электронов 70 МэВ. Создана система детектирования гамма-излучения с эффективной схемой маскирования ФЭУ и специализированной обработкой данных. Данный метод может быть существенно улучшен после проведения измерения выходов и сечений фотоядерных реакций, которые в настоящее время известны с очень небольшой точностью.

2. http://nucleardata.nuclear.lu.se/nucleardata/toi/

V.I.Shvedunov, A.N.Ermakov, I.V.Gribov // Nucl. Instr. and Meth. in Phys. Res. 2005. A550. P. 39.