ФОТОРАСЩЕПЛЕНИЕ ИЗОТОПОВ Sn

Б.С. Ишханов^{1,2}, <u>В.А. Четверткова²</u> ¹ Физический факультет МГУ им. Ломоносова ² Научно-исследовательский институт ядерной физики, МГУ E-mail: tche@rambler.ru

Yields of various photonuclear reactions on natural mix of tin isotopes are measured using Bremsstrahlung radiation with two different values of upper limit: T=19.5 and 29.1 MeV. The results of previous experiments are analyzed. Obtained results are compared with theoretical calculations based one simple semi-microscopic model.

Механизм взаимодействия у-квантов с атомными ядрами зависит от энергии у-квантов. Область энергий возбуждения ядра до 30 МэВ можно разделить на два интервала: область возбуждения гигантского дипольного резонанса (ГДР, \approx 10-30 МэВ) – широкого максимума в сечении поглощения у-квантов атомными ядрами [1], и область ниже ГДР, где происходит возбуждение отдельных уровней ядра.

Целью настоящей работы является изучение парциальных каналов распада ГДР изотопов Sn в области энергий до 30 МэВ.

Sn – магическое по количеству протонов ядро (Z=50), поэтому у этого химического элемента существует большое число стабильных изотопов. Процентное содержание стабильных изотопов в естественной смеси приведено в таблице 1. Пороги отделения нуклона в разных изотопах варьируются в пределах от 7.5 до 12 МэВ (таблица 1), в зависимости от массового числа А. Пороги реакций, приведенные в таблице 1, рассчитывались на основе данных обзора [1].

		Пороги реакций, МэВ						
Изотоп	Содержание, %	γ, n	γ, p	γ, 2n	γ, 2p	γ, pn	γ, 3n	γ, 3p
112 Sn	0.97	10.79	7.55	18.96	12.89	17.55	30.24	21.81
¹¹⁴ Sn	0.65	10.30	8.48	18.04	14.56	17.93	28.83	24.21
¹¹⁵ Sn	0.34	7.55	8.75	17.85	15.57	16.03	25.59	25.28
¹¹⁶ Sn	14.53	9.56	9.28	17.11	16.09	18.32	27.41	26.37
¹¹⁷ Sn	7.68	6.94	9.44	16.51	16.89	16.22	24.06	27.32
¹¹⁸ Sn	24.23	9.33	10.00	16.27	17.52	18.77	25.84	28.54
¹¹⁹ Sn	8.59	6.48	10.13	15.81	18.22	16.48	22.76	29.37
¹²⁰ Sn	32.59	9.11	10.69	15.59	18.98	19.24	24.92	30.71
122 Sn	4.63	8.81	11.39	14.98	20.55	19.57	24.09	33.26
¹²⁴ Sn	5.79	8.49	12.10	14.43	22.09	20.02	23.25	35.44

Таблица 1. Изотопный состав и пороги реакций на изотопах Sn

Для экспериментального определения выходов различных реакций на изотопах Sn, мишень из естественной смеси изотопов олова облучалась в пучке тормозных у-квантов с верхними границами T = 19.5 МэВ и T = 29.1 МэВ. Пучок тормозных у-квантов диаметром d ~ 1 см получался на разрезном

микротроне РТМ-70, НИИЯФ МГУ [2] в результате облучения вольфрамовой мишени толщиной 2.5 мм электронами. Измерения спектров остаточной активности γ-квантов проводились на детекторе из сверхчистого германия HPGe. Эффективность детектора – 30%. Разрешение детектора изменяется в зависимости от энергии γ-квантов и составляет 0.9 кэВ при энергии 122 кэВ и 1.9 кэВ при энергии 1.33 МэВ.

Изучаемый образец Sn представлял собой металлический диск диаметром d ~ 2 см и толщиной t ~ 0.2 мм. Размеры облучаемого образца были подобраны таким образом, чтобы избежать возможной неоднородности пучка и максимально уменьшить краевые эффекты при смещении пучка относительно центра мишени.

Облучение при максимальной энергии тормозных γ-квантов T = 19.5 МэВ проводилось в течение 4 часов, измерение спектров γ-квантов остаточной активности началось через 5 минут после окончания облучения. Было измерено 36 спектров по 10 минут и 275 спектров по 30 минут. Спектры γ-квантов измерялись в диапазоне энергий γ-квантов от 35 кэВ до 2.9 МэВ. На рис. 1 представлены суммарные спектры за первый и за последний час счета активности облученной мишени в диапазоне энергий γ-квантов от 35 до 700 кэВ.

Рис.1. Суммарные спектры длительностью 1 час, полученные при максимальной энергии фотонов T = 19.5 МэВ (I - сразу после окончания облучения; II - через 6 дней после окончания облучения).

При энергии T = 29.1 МэВ образец облучался в течение 1 часа. Измерения спектров начались также через 5 минут после окончания облучения. Было измерено 268 спектров, из них 72 по 5 минут, 36 по 10 минут и 160 по 30 минут. Полученные спектры остаточной γ-активности приведены на рис.2.

В результате облучения γ -квантами с верхней границей энергии T < 30 МэВ, на изотопах олова могут происходить реакции с вылетом до 2 нуклонов: (γ , n), (γ , 2n), (γ , p), (γ , pn). Пороги реакций приведены в Таблице 1. Образующиеся радиоактивные изотопы имеют различные периоды полураспада, лежащие в пределах от нескольких секунд до сотен дней. Метод проведения эксперимента (время облучения, время переноса, время измерения спектров) позволяет наблюдать изотопы с периодами полураспада, t_{1/2} > 5 мин.

Рис.2. Суммарные спектры длительностью 1 час, полученные при максимальной энергии фотонов *T* = 29.1 *МэВ* (*I* – *сразу после окончания облучения; II* – *через 4 дня после* окончания облучения.

Расшифровка спектров у-квантов остаточной активности проводилась как по энергиям максимумов в спектре у-квантов конечных, образующихся в результате фотоядерной реакции, ядер, так и по периодам полураспада конечных ядер. В спектрах обнаружено свыше 60 максимумов.

ү-квантов W(E,T)Спектр тормозных рассчитывался помощью С компьютерного моделирования. Результаты расчета спектра тормозных уквантов показаны на рис. 3. Расчет проводился для двух значений верхней границы энергий у-квантов – 19.5 и 29.1 МэВ, соответствующих условиям проведения эксперимента. Для каждого из тормозных спектров рассчитывалось тормозной мишени 10⁶ электронами. Облучаемый облучение образец помещался вплотную к тормозной мишени. Ширина канала рассчитанного спектра тормозных у-квантов составляла 10 кэВ.

Рис. 3. Тормозные спектры (Максимальная энергия электронов T = 19.5 МэВ, T = 29.1 МэВ) Выходы реакций рассчитывались по интенсивностям γ-линий в спектрах остаточной активности. При расчете выходов реакции учитывались следующие факторы, влияющие на интенсивность максимумов в спектре: зависимость эффективности детектора от энергии Е γ-квантов, временные факторы, учитывающие время облучения, время переноса мишени к детектору, время счета остаточной активности, процентное содержание различных изотопов в мишени.

Ранее сечения реакций $\sigma(\gamma, n)$, $\sigma(\gamma, 2n)$ для изотопов Sn были измерены в экспериментах на пучке квазимонохроматических фотонов [3, 4]. Сечения $\sigma(\gamma, Xn) = \sigma(\gamma, n) + 2\sigma(\gamma, 2n)$ были получены на пучке тормозных фотонов [5,6] (таблица 2).

Изотоп	Измеренные сечения	Измеренные сечения	Рассчитанные сечения[5,6]
	[3]	[4]	
112 Sn			(γ, Xn)
114 Sn			(γ, Xn)
¹¹⁶ Sn	$(\gamma, n), (\gamma, 2n)$	$(\gamma, n), (\gamma, 2n)$	(γ, Xn)
¹¹⁷ Sn	$(\gamma, n), (\gamma, 2n)$	$(\gamma, n), (\gamma, 2n)$	(γ, Xn)
¹¹⁸ Sn	$(\gamma, n), (\gamma, 2n)$	$(\gamma, n), (\gamma, 2n)$	(γ, Xn)
¹¹⁹ Sn	$(\gamma, n), (\gamma, 2n)$		(γ, Xn)
¹²⁰ Sn	$(\gamma, n), (\gamma, 2n)$	$(\gamma, n), (\gamma, 2n)$	(γ, Xn)
122 Sn			(γ, Xn)
¹²⁴ Sn	$(\gamma, n), (\gamma, 2n)$	$(\gamma, n), (\gamma, 2n)$	(γ, Xn)

Таблица 2. Полученные сечения фотоядерных реакций [3,4,5,6]

На пучке квазимонохроматических фотонов непосредственно измеряются сечения (γ , n) и (γ , 2n). На пучке тормозных фотонов сечения реакции (γ , Xn) рассчитывались из выходов соответствующих реакций. Учитывалась множественность выхода нейтронов выше порога реакции (γ , 2n) и рассчитывались сечения реакций (γ , n) и (γ , 2n). На рис.4 для примера приведены полученные в этих работах [3,4,6] сечения реакций (γ , n) и (γ , 2n) на изотопе ¹¹⁶Sn.

Рис. 4. Сечения реакций (у, n) и (у, 2n) на изотопах ¹¹⁶Sn, полученные в работах [3,4,6].

Из сравнения полученных в работах [3,4,5,6] результатов видно, что в целом полученные результаты согласуются между собой. Однако наблюдаются определенные различия:

- в величинах сечений в максимуме σ_m
- в положениях максимумов сечения E_m
- в ширинах резонансов Г

Для сравнения полученных сечений с результатами теоретических расчетов [7] нами были рассчитаны оцененные сечения реакций (γ, n) и (γ, 2n) для всех экспериментально полученных в работах сечений [3,4,5,6]. В тех случаях, когда для данного изотопа было известно несколько сечений, оцененные сечения получались в результате усреднения результатов и их сглаживания на сетке в 200 кэВ. В тех случаях, когда для данного изотопа имелся только один результат, сечение сглаживалось на сетке в 200 кэВ. Энергетические сдвиги сечений или какие-либо калибровки энергетических шкал не проводились. На рис. 5 приведены полученные нами оцененные сечения реакций для ¹¹⁶Sn.

Из полученных таким методом оцененных сечений рассчитывались затем сечения реакций $\sigma(\gamma, Sn) = \sigma(\gamma, n) + \sigma(\gamma, 2n)$. Т.к. каналы реакций (γ, n) и $(\gamma, 2n)$ являются основными каналами ГДР для исследуемых изотопов Sn, сечение реакции $\sigma(\gamma, Sn)$ хорошо описывает полное сечение поглощения на этих изотопах. Поэтому сечение реакции (γ, Sn) должно хорошо описываться с помощью кривой Лоренца, используемой для описания полного сечения поглощения γ -квантов в области ГДР. Аппроксимация полученного сечения реакции $\sigma(\gamma, Sn)$ на ядре ¹¹⁶Sn с помощью лоренцевской кривой приведена на рис.5.

Аппроксимации сечений, полученные с помощью лоренцевских кривых, и оцененные сечения реакций были использованы для расчетов выходов реакции для двух значений верхних границ тормозного излучения T = 19.5 и 29.1 МэВ. Полученные значения относительных выходов наблюдаемых реакций приведены в таблицах 3 и 4. Выходы реакций отнормированы на выход реакции ¹²⁴Sn(γ , n)^{123m}Sn.

Приведенные в таблицах 3 и 4 результаты свидетельствуют о том, что впервые на изотопах Sn обнаружены ранее не изученные каналы распада ГДР с

испусканием протонов (γ, р) и (γ, рп). На изотопах ¹¹⁷Sn и ¹²³Sn измерены выходы изомерных состояний, образующихся в результате фотонейтронных реакций.

Рис.6. Сравнение полученных оцененных сечений и теоретически рассчитанных [7] сечений реакций (у, n) и (у, 2n) на изотопе ¹¹⁶Sn

Сравнение полученных нами результатов с теоретическими расчетами (рис. 6), выполненными на основе простой полумикроскопической модели [7] показывает, что эта модель адекватно описывает экспериментальные данные для всех измеренных сечений и выходов фотоядерных реакций, в том числе и для редких каналов распада, составляющих несколько процентов от основных каналов распада ГДР.

Положение максимума в	Природа перехода	Ү, относительный
спектре ү-квантов, Е _{тах} , кэВ		выход реакции
		_
160,33	124 Sn (γ ,n) 123m Sn	1.00E+00
381,4		1.31E+00
156,02	118 Sn (γ ,n) 117m Sn; 119 Sn (γ ,2n) 117m Sn	8.71E-01
159,562		8.71E-01
391,69	114 Sn (γ ,n) 113 Sn; 115 Sn (γ ,2n) 113 Sn	5.11E-03
1152,98	112 Sn(γ ,n) 111 Sn;	2.62E+00
1542,75		1.56E+00
1610		7.86E+00
1914,7		6.08E+00
458,5	117 Sn(γ ,p) 116m In	5.11E-03
1293,558		4.36E-03
336,24	116 Sn(γ ,p) 115m In; 117 Sn(γ ,pn) 115m In	3.24E-03
391,69	114 Sn(γ ,p) 113m In; 115 Sn(γ ,pn) 113m In	1.26E-02
171,28	112 Sn(γ ,p) 111 In	6.05E-03
245,4		6.62E-03

Таблица 3. Облучение при максимальной энергии фотонов Т = 19,5 МэВ

Положение максимума в спектре ү-квантов, Е _{тах} , кэВ	Природа перехода	Y, относительный выход реакции
160,33	124 Sn (γ ,n) 123m Sn	1.00E+00
156,02	118 Sn (γ ,n) 117m Sn; 119 Sn (γ ,2n) 117m Sn	1.80E-02
159,562		1.46E-02
391,69	114 Sn (γ ,n) 113 Sn; 115 Sn (γ ,2n) 113 Sn	7.89E-03
1152,98	112 Sn(γ ,n) 111 Sn;	1.76E-01
761,97		4.42E-01
1610		2.15E-01
1914,7		1.82E-01
683,06	¹¹⁹ Sn (γ ,p) ^{118m} In	1.23E-03
158,562	118 Sn (γ ,p) 117m In; 119 Sn (γ ,pn) 117m In	2.17E-02
315,562		4.83E-04
158,562	118 Sn (γ ,p) 117 In; 119 Sn (γ ,pn) 117 In	9.19E-01
553		3.81E+01
416,86	117 Sn(γ ,p) 116m In	6.27E-05
1097,326		7.61E-05
1293,558		1.55E-05
336,24	116 Sn(γ ,p) 115m In; 117 Sn(γ ,pn) 115m In	1.29E-03
391,69	114 Sn(γ ,p) 113m In; 115 Sn(γ ,pn) 113m In	4.26E-05
171,28	112 Sn(γ ,p) 111 In	6.10E-03
245,4		7.17E-03
537,22	112 Sn(γ ,p) 111m In	2.03E-03
657,7622	112 Sn(γ ,pn) 110 In	2.94E-04

Таблица 4. Облучение при максимальной энергии фотонов Т = 29,1 МэВ

- [1] G.Audi, A.H.Wapstra, C.Thibault, "The Ame2003 atomic mass evaluation (II)", Nuclear Physics A729 p. 337-676, December 22, 2003.
- [2] А.Н. Ермаков, Диссертация на соискание ученой степени кандидата физикоматематических наук, МГУ, Москва, 2004.
- [3] S.C. Fultz et al., Photoneutron Cross Sections for ¹¹⁶Sn, ¹¹⁷Sn, ¹¹⁸Sn, ¹¹⁹Sn, ¹²⁰Sn, ¹²⁴Sn, and Indium, Phys. Rev, vol. 186, p. 1255, 10.1969
- [4] Lepretre et al., Nucl. Phys. A219, p.39, 1974
- [5] Ю.И. Сорокин и др., Ядерная физика, 20, 233, 1974
- [6] Ю.И. Сорокин и др., Известия АН, 39, 114, 1975
- [7] Ишханов Б.С., Орлин В.Н, ЭЧАЯ, 2007, т. 38, в. 2, с. 460-503.