МЕХАНИЗМЫ РОЖДЕНИЯ **Ξ-**ГИПЕРОНОВ АНТИКАОНАМИ НА НУКЛОНАХ С УЧЕТОМ ВЫСОКОСПИНОВЫХ РЕЗОНАНСОВ

В.Л. Коротких, Д.Е. Ланской, Д.А. Шаров НИИЯФ МГУ, 119991 Москва, Россия sharov@depni.sinp.msu.ru

A phenomenological model of Ξ hyperon production from nucleons by antikaons, which includes exchanges by various Λ and Σ hyperons with spin up to 7/2, is developed. The model successfully reproduces available experimental data on integral and differential cross sections and polarization of the reaction in the different charge channels at the center-of-mass energies from the threshold up to 3.2 GeV. The s channel exchange by high-mass and high-spin resonances is important for systematic description of all available data.

1. Введение

Хотя Ξ -гипероны были открыты вскоре после Λ - и Σ -гиперонов, информация о динамических свойствах барионов со странностью -2 до сих пор остается значительно более ограниченной. Связано это с тем, что реакции рождения Ξ -гиперонов по сравнению с рождением Λ - и Σ -гиперонов обычно сложнее, а их сечения меньше.

Рождение Е-гиперонов в бинарном процессе возможно на пучках каонов в реакции $KN \rightarrow K\Xi$, которая активно исследовалась в 60-70-е годы [1,2]. Однако, поскольку пучки имели низкую интенсивность, полученная статистика была мала, а параметры реакций извлекались с большой погрешностью. Известен ряд теоретических работ (например, [3,4]), в которых обсуждались возможные механизмы реакции $KN \rightarrow K\Xi$ И отмечены некоторые интересные закономерности, однако попыток единого всей совокупности или хотя бы значительной описания части экспериментальных данных до настоящего времени не предпринималось.

Можно надеяться, что в ближайшие годы физика Е-гиперонов новый благодаря выйдет качественно уровень развитию на экспериментальной базы. Изучение фоторождения Е-гиперонов в реакции ур→К⁺К⁺Ξ⁻ уже сейчас активно идет в Джефферсоновской лаборатории (США) [5]. Хотя сечения электромагнитного рождения, разумеется, малы, возможности ускорительного комплекса CEBAF позволяют получить весьма детальную информацию о реакции. Мощный пучок антикаонов, который вскоре должен быть получен на ускорительном комплексе J-PARC (Япония), позволит выполнить исследование рождения Е-гиперонов на ядрах и получить информацию о EN-взаимодействии из свойств Египерядер [6], о которых до настоящего времени известно очень мало.

Таким образом, разработка теоретических подходов, позволяющих описать различные реакции рождения Ξ -гиперонов и понять их механизмы, становится актуальной задачей. В настоящей работе мы представляем анализ всей совокупности данных о реакции $\overline{K}N \rightarrow K\Xi$ в диапазоне энергий от порога до 3.2 ГэВ в системе центра масс в различных зарядовых каналах.

Информация, извлеченная из реакции $\overline{K}N \to K\Xi$, может быть далее использована для анализа данных по фоторождению Ξ -гиперонов.

2. Модель

Для вычисления амплитуд и сечений используется стандартная диаграммная техника. Простейшие диаграммы для реакции $\overline{K}N \rightarrow K\Xi$ представлены на рис. 1. Т.к. не существует мезонов с двойной странностью, одномезонный t-канальный обмен невозможен. Поэтому мы строим модель на основе s- и u-канальных механизмов.

Рис. 1. Диаграммы процесса $\overline{K}N \to K\Xi$, соответствующие s- и u-каналам. Y обозначает обмениваемый барион: Λ - или Σ -гиперон.

Мы рассматриваем три зарядовых канала, для которых имеются экспериментальные данные:

$K^- p \rightarrow K^+ \Xi^-,$	(1)
$K^- p \rightarrow K^0 \Xi^0$,	(2)
$K^-n \to K^0 \Xi^-$	(3)

В процесс (1) могут давать вклад u- и s-канальные обмены как Λ так и Σ -гиперонами; в процессе (2) u-канальный обмен Λ -гипероном запрещен; в процессе (3) невозможен s-канальный обмен Λ -гипероном.

Для вершин B(1/2⁺)Y(1/2)K(0⁻) используем эффективные лагранжианы с псевдовекторной связью:

$$L = \frac{f_{BYK}}{m_{\pi}} \overline{B} \gamma_{\mu} \Gamma Y \partial^{\mu} K + h.c., \qquad (4)$$

где $\Gamma = \gamma_5$ для $Y(1/2^+)$ или $\Gamma = 1$ для $Y(1/2^-)$.

Для вершин $B(1/2^+)Y(3/2)K(0^-)$ связь описывается лагранжианом вида:

$$L = \frac{f_{BYK}}{m_{\pi}} \overline{B} \Gamma Y_{\mu} \partial^{\mu} K + h.c., \qquad (5)$$

где Г=1 для $Y(3/2^+)$ или Г= γ_5 для $Y(3/2^-)$.

Для вершин $B(1/2^+)Y(5/2)K(0^-)$ и $B(1/2^+)Y(7/2)K(0^-)$ лагранжианы строятся аналогично.

Пропагатор для барионов со спином ¹/₂ имеет стандартную форму. Для барионов со спинами 3/2 и 5/2 мы использовали пропагаторы из работ [7] и [8] соответственно. Для пропагатора частицы со спином 7/2 мы использовали полученное нами выражение. Явные формулы для этих пропагаторов довольно громоздки и здесь не приводятся. Формфактор для каждой диаграммы выбран в гауссовском виде $F(q)=\exp(-q^2/Q^2)$, где q - 3-импульс обмениваемого бариона, а Q – параметр обрезания.

3. Результаты и обсуждение

Мы выполнили прямую подгонку параметров модели (произведения констант связи $f_Y = f_{KNY} f_{K \equiv Y}$ и параметры обрезания) под экспериментальные интегральные и дифференциальные сечения реакций (1) и (2). Данные по реакции (3), крайне скудные и с большими ошибками, использовались лишь для проверки модели. В процедуру подгонки не включались также весьма грубые данные по поляризации.

Для начала мы включили в модель обмен только Λ - и Σ - гиперонами в основных состояниях. Уже это позволило воспроизвести основные качественные черты данных. Описание существенно улучшается, если включить также обмен двумя резонансами со спином 3/2: $\Sigma(1385)$ и $\Lambda(1520)$. Дальнейшее увеличение числа подпороговых (порог реакции равен 1812-1819 МэВ в зависимости от зарядового канала) резонансов, например, добавление $\Lambda(1405)$, не дает заметного эффекта.

При учете u- и s-канальных обменов Λ -, Σ -, $\Sigma(1385)$ -, и $\Lambda(1520)$ гиперонами наилучшее полученное значение χ^2 =1105 при 374 экспериментальных точках. Модель хорошо описывает энергетическую зависимость интегрального сечения, форму дифференциального сечения. Однако заметный пик вперед, наблюдаемый в дифференциальных сечениях реакции (2), модель в данном варианте не описывает. Модель также занижает значение интегрального сечения в области \sqrt{s} =1.9-2.1 ГэВ. Мы видим, что возможности модели с учетом обмена только подпороговыми резонансами ограничены, и пытаемся улучшить качество описания данных, включая в расчет резонансы, лежащие выше порога.

В компиляции свойств элементарных частиц [9] перечислено 8 Λ - и Σ -резонансов с массой 1.89-2.35 ГэВ, обнаруженных с высокой степенью достоверности. Ни для одного из этих резонансов не установлены относительные вероятности распада на Ξ К, и только для двух из них известны верхние границы. По-видимому, для всех этих резонансов данные вероятности малы. Однако, поскольку сечения реакции $\overline{K}N \rightarrow K\Xi$ также малы, даже с маленькими вероятностями распада надпороговые резонансы могут давать существенный вклад в эту реакцию.

Мы пробовали включать в расчет различные наборы надпороговых резонансов и установили, что наилучшее описание достигается при учете sканальных обменов резонансами $\Lambda(2100, J^p=7/2)$ и $\Sigma(2030, J^p=7/2)$. Таким образом, в окончательном варианте модель включает u- и s-канальные Σ -, $\Sigma(1385)$ -, и $\Lambda(1520)$ -гиперонами и s-канальные обмены обмены Л-, $\Lambda(2100)$ -И Σ(2030)-гиперонами. Свободными параметрами модели являются: 6 произведений констант связи f_Y=f_{KNY}f_{KEY} и 2 параметра надпороговых обрезания Q для подпороговых И Q_{R} И частиц соответственно

Наилучшее описание данных моделью достигается при следующих значениях параметров: $f_{\Lambda} = -0.140$, $f_{\Sigma} = -0.261$, $f_{\Lambda(1520)} = 0.806$, $f_{\Sigma(1385)} = 0.035$, $f_{\Lambda(2100)} = 0.041$, $f_{\Sigma(2030)} = 0.015$, Q = 0.987, Q_R = 0.523. При этом $\chi^2 = 984$. Интегральные и дифференциальные сечения реакций (1) и (2) при таких значениях параметров, в сравнении с результатами, полученными при учете u- и s-канальных обменов Λ -, Σ -, $\Sigma(1385)$ -, и $\Lambda(1520)$ -гиперонами представлены на рис. 2 и 3.

Рис. 2. Интегральные сечения σ в зависимости от энергии в системе центра масс \sqrt{s} для реакций а) $K^- p \rightarrow K^+ \Xi^-$ и б) $K^- p \rightarrow K^0 \Xi^0$. Кривые показывают результаты модельных расчетов: пунктирная кривая показывает наилучшее приближение при учете обменов только подпороговыми частицами, сплошная кривая – при учете обменов как подпороговыми частицами, так и надпороговыми резонансами $\Lambda(2100)$ и $\Sigma(2030)$.

Рис. 3. Дифференциальные сечения $d\sigma/d\Omega$ в зависимости от косинуса угла вылета каона в системе центра масс $\cos(\theta)$ для реакций $K^-p \rightarrow K^+\Xi^-$ при $\sqrt{s} = 2.02 \ \Gamma \Rightarrow B$ (а) и $\sqrt{s} = 2.27 \ \Gamma \Rightarrow B$ (в) и реакции $K^-p \rightarrow K^0\Xi^0$ при $\sqrt{s} = 2.02 \ \Gamma \Rightarrow B$ (б) и $\sqrt{s} = 2.27 \ \Gamma \Rightarrow B$ (г). Кривые показывают результаты модельных расчетов: пунктирная кривая показывает наилучшее приближение при учете обменов только подпороговыми частицами, сплошная кривая – при учете обменов как подпороговыми частицами, так и надпороговыми резонансами $\Lambda(2100)$ и $\Sigma(2030)$.

Добавление надпороговых резонансов $\Lambda(2100)$ и $\Sigma(2030)$ существенно улучшило описание интегральных сечений в области $\sqrt{s}=1.9-2.1$ ГэВ. В дифференциальных сечениях реакции (2) появился пик вперед в согласии с экспериментом. Рассчитанные значения поляризации стали сопоставимы с данными. Данные по реакции (3), не включенные в процедуру подгонки, также описываются неплохо.

4. Заключение

Мы разработали феноменологическую модель рождения Ξ гиперонов антикаонами на протонах. Впервые получено систематическое и согласованное описание всего объема имеющихся данных в интервале энергий от порога до $\sqrt{s}=3.2\Gamma$ эВ. Показано, что для описания данных, помимо u- и s-канальных обменов подпороговыми частицами Λ , Σ , $\Sigma(1385)$, и $\Lambda(1520)$, необходимо включение s-канальных обменов надпороговыми высокоспиновыми резонансами $\Lambda(2100)$ и $\Sigma(2030)$. Модель может использоваться, в частности, для предсказания сечений рождения Ξ гиперядер в реакции (\overline{K} , K) в различных зарядовых каналах [10].

Дальнейшее изучение механизмов рождения Ξ -гиперонов связано с включением в рассмотрение реакции $\gamma p \rightarrow K^+ K^+ \Xi^-$ [5]. В единственной на эту тему теоретической работе [11] данные по реакции (\overline{K} , K) не принимаются во внимание. Следующей задачей должно стать совместное описание рождения Ξ -гиперонов каонами и фотонами.

Работа частично поддержана грантом РФФИ 08-02-00510 и грантом для ведущих научных школ НШ-485.2008.2.

СПИСОК ЛИТЕРАТУРЫ

1. *A.Bellefon et al.* // Nuovo Cimento A. 1972. V. 7. P. 567, *J.P.Berge et al.* // Phys. Rev. 1966. V. 147. P. 945, *P.M.Dauber et al.* // Phys. Rev. 1969. V. 179. P. 1262, *W.P.Trower et el.* // Phys. Rev. 1968. V. 170. P. 1207, *D.D.Carmony et al.* // Phys. Rev., Lett. 1964. V. 12. P. 482, *T.G.Trippe and P.E.Schlein* // Phys. Rev. 1967. V. 158. P. 1334.

2. *J.Griselin et al.* // Nucl. Phys. B. 1975. V. 93. P. 189, *G.Burgun et al.* // Nucl. Phys. B. 1968. V. 8. P. 447, *J. R.Carlson et al.* // Phys. Rev. D. 1973. V. 7. P. 2533, *J.C.Scheuer et al.* // Nucl. Phys. B. 1971. V. 33. P. 61, *E.Briefel et al.* // Phys.Rev. D. 1975. V. 12. P. 1859, *F.A.Dibianca et al.* // Nucl. Phys. B 1975. V. 98. P. 137.

3. *M.E.Ebel and P.B.James* // Phys. Rev. 1967. V. 153. P. 1694.

4. B.K.Agarwal et al. // J. Phys. A. 1971. V. 4. P. L52-L55.

5. *L.Guo et al.* // Phys. Rev. C. 2007. V. 76. P. 025208, *W. Price et al.* // Phys. Rev. C. 2005. V. 71. P. 058201

6. T.Nagae // Nucl. Phys. A. 2005. V. 754. P. 443.

7. M. Benmerrouche, R. Davidson and N. Mukhopadhyay // Phys. Rev. C 1989. V. 39. P. 2339.

8. J. C. David, C. Fayard, G. H. Lamot, and B. Saghai // Phys. Rev. C 1996. V. 53. P. 2613.

9. C. Amsler et al. // Phys. Lett. B 2008. V. 667. P. 1.

10. V.L.Korotkikh, D.E.Lanskoy, D.A.Sharov and Y.Yamamoto // Proc. 23rd Intern. Nucl. Phys. Conf. (Tokyo, 2007), Elsevier. 2008. V. 2. P. 176.

11. K.Nakayama, Y.Oh and H.Haberzettl // Phys. Rev. C. 2006. V. 74. P. 035205.