ТЕОРЕТИЧЕСКОЕ ОПИСАНИЕ ГИГАНТСКОГО ДИПОЛЬНОГО РЕЗОНАНСА В ИЗОТОПАХ ТИТАНА

Н.Г. Гончарова, Ю.А. Скородумина

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова, 119991, Москва E-mail: <u>n.g.goncharova@gmail.com</u>, <u>lokom11@mail.ru</u>

Экспериментальные исследования взаимодействий ядер с различными пробными частицами привели к появлению обширной информации о сечениях ядерных возбуждений. Основной особенностью этих сечений в области континуума являются гигантские резонансы, структура и ширины которых зависят от квантовых чисел ядерных состояний и переданного ядру импульса.

Даже для наиболее хорошо исследованных электрических дипольных возбуждений в четно-четных ядрах остается открытым вопрос теоретической интерпретации наблюдаемой структуры и ширины резонансов.

Данная работа посвящена теоретическому описанию *E*1-резонансов в четно-четных изотопах титана. Экспериментальное исследование фотоядерных реакций на ядрах ⁴⁶*Ti*, ⁴⁸*Ti* и ⁵⁰*Ti* были предприняты в работах [1-3]. Оболочечные эффекты наблюдаются в уменьшении ширины резонанса по мере заполнения нейтронной $1f_{7/2}$ оболочки от ⁴⁶*Ti* к ⁵⁰*Ti*. Причем, особенности фрагментации силы резонанса резко меняются от ядра к ядру.

фрагментации силы резонанса резко меняются от ядра к ядру. Микроскопическое описание резонансов в ⁴⁶*Ti*, ⁴⁸*Ti* и ⁵⁰*Ti* было предпринято в рамках версии «частица-состояние конечного ядра = ЧСКЯ» многочастичной модели оболочек, учитывающей распределение дырочной конфигурации по состояниям конечных ядер [4].

Волновые функции возбужденных состояний ядра в ЧСКЯ строятся как произведения волновых функций конечного ядра (*A*-1) и волновых функций нуклона:

$$\left|J_{f}T_{f}\right\rangle = \sum \alpha_{f}^{J'T',j} \left| (J'E'T')_{(A-1)} \times (n_{f}l_{f}j_{f}) : J_{f}T_{f} \right\rangle$$
(1)

В число состояний конечного ядра в (1) должны быть включены все состояния, имеющие генеалогическую связь с основным состоянием ядрамишени:

$$\left|J_{i}T_{i}\right\rangle = \sum C_{i}^{J'T',j} \left| (J'E'T')_{(A-1)} \times (n_{i}l_{i}j_{i}) : J_{i}T_{i} \right\rangle$$
(2)

Коэффициенты С_i могут быть оценены следующим образом:

$$C_i = \sqrt{\frac{S_i}{\sum_i S_i}}, \qquad (3)$$

где S_i – спектроскопический фактор прямой (p,d) реакции, приводящей к возникновению ядер (A-1) в основном и возбужденных состояниях.

Коэффициенты α – результат диагонализации гамильтониана на базисе ЧСКЯ.

Расчет структуры *E*1-резонанса в изотопах титана проводился на основе спектроскопических данных прямых (*p*,*d*) реакций на ⁴⁶*Ti*, ⁴⁸*Ti* и ⁵⁰*Ti* [5]. Размерности базисов входных конфигураций, построенных на основе данных [5], приведены в таблице 1.

⁴⁶ Ti		⁴⁸ Ti		⁵⁰ Ti	
T<=1	T>=2	T<=2	T>=3	T<=3	T>=4
35	11	36	8	37	11

Таблица 1. Размерности базисов входных конфигураций.

Согласно [5], во всех исследуемых изотопах титана наблюдаются отклонения от замкнутых оболочек. Так нейтронные числа заполнения оболочки $1f_{7/2}$ составляют 4.06, 4,81 и 5.11 для ${}^{46}Ti$, ${}^{48}Ti$ и ${}^{50}Ti$ соответственно. Нейтронные числа заполнения оболочки $2p_{3/2} - 0.22$, 0.15 и 0.26 для ${}^{46}Ti$, ${}^{48}Ti$ и ${}^{50}Ti$ соответственно.

Исследование прямых реакций в четно-четных изотопах титана показало интересную особенность связи состояний ядра-мишени с состояниями конечного ядра. Если для изотопов ⁴⁶*Ti* и ⁵⁰*Ti* в результате (*p,d*) реакции велика вероятность образования дочернего ядра в основном состоянии, то для ⁴⁸*Ti* это не так. Квантовые числа основного состояния ⁴⁷*Ti* $J^p=5/2^{-}$. Согласно [5], относительная вероятность возбуждения этих состояний в ядре ⁴⁷*Ti* около 0.37. Таким образом, в дипольном расщеплении ⁴⁸*Ti* основное состояние ⁴⁷*Ti* практически не идет, в то время как распад на второе возбужденное состояние идет с большой вероятностью.

Были получены волновые функции для 1⁻ $T_{<}$ и 1⁻ $T_{>}$ состояний ядер ⁴⁶Ti, ⁴⁸Ti и ⁵⁰Ti, на их основе рассчитаны формфакторы E1 электровозбуждения в «фототочке» ($q=\omega$) и оценены ширины распадов отдельных пиков по нейтронным каналам.

$$F_{E1,T_f}^2(q) == \left| \left\langle J_f^P = 1^-, T_f \left| \left| \widehat{T}_1^{el}(q) \right| \right| J_i^P = 0^+, T_i \right\rangle \right|^2;$$
(4)

Оператор $\widehat{T}_1^{el}(q)$ содержит вклады, соответствующие взаимодействию реального либо виртуального фотона как с орбитальным, так и со спиновым токами ядра-мишени. В «фототочке» – для реального фотона – в возбуждении ядра проявляется лишь орбитальный ток:

На рисунках 1-3 показаны результаты расчета сечений фотоядерных реакций в трех четно-четных изотопах титана в сравнении с экспериментальными данными [1-3].

 ^{50}Ti с точки зрения модели оболочек является замкнутой $1f_{7/2}$ структурой. Прямые реакции указывают на 65% заполнение этой нейтронной подоболочки и, таким образом, большую роль корреляций в основном состоянии. Экспериментальное сечение в области энергий >19.1 МэВ является результатом сложения реакций (γ ,n) и (γ ,2n) с преобладанием второй реакции [5]. Показанная на рисунке теоретическая кривая является результатом расчета (γ ,n) реакции.

Рис. 1. Эффективное сечение реакции ${}^{50}Ti(\gamma,n)$. Экспериментальные данные [3].

Рис. 2. Эффективное сечение реакции ${}^{48}Ti(\gamma,n)$. Экспериментальные данные [1].

Рис.3. Эффективное сечение реакции ⁴⁶*Ti*(*γ*,*n*). Экспериментальные данные [2].

Анализ расчетов для ${}^{48}Ti$ и ${}^{46}Ti$ показали увеличение степени фрагментации по мере удаления от замкнутой (с точки зрения одночастичной оболочечной модели) оболочки. Расчет приближенно воспроизводит соотношения ширин гигантского дипольного резонанса в ядрах ${}^{46}Ti$, ${}^{48}Ti$. Изоспиновое расщепление играет вторичную роль в формировании ширины резонанса, так как ширина максимальна у ${}^{46}Ti$, который имеет наименьшее изоспиновое расщепление. Проведенный анализ показывает, что основным источников фрагментации резонансов является распределение дырочных состояний по состояниям конечных ядер.

Результаты расчета изоспинового расщепления *E*1-резонансов в изотопах титана в сравнении с оценками работы [6] приведены в таблице 2.

	⁴⁶ Ti, T ₀ =1	⁴⁸ Ti, T ₀ =2	⁵⁰ Ti, T ₀ =3			
$E_{cp}(T_{<}), M \ni B$	17.7	18.1	18.7			
$E_{cp}(T_{>}), M \ni B$	20.0	23.6	25			
$\Delta E_{pacyer}, M \ni B$	2.3	5.5	6.3			
$\Delta E = 60(T_0 + 1)/A[6]$	2.6	3.75	4.8			

Таблица 2. Оценка средневзвешенных энергий изоспиновых ветвей и изоспинового расщепления в изотопах титана

Недооценка вероятностей (γ ,*n*)-реакций в области энергий выше *E* \approx 20 МэВ возникает по двум причинам. Во-первых, при использованных в прямых реакциях [5] энергиях налетающих протонов вероятность дипольных переходов из глубоких подоболочек оказывается недооцененной. Во-вторых,

при заселении уровней дочерних ядер в этой области энергий растет вероятность вылета вторичных нейтронов.

Сравнение результатов расчета фоторасщепления ⁴⁶*Ti*, ⁴⁸*Ti* и ⁵⁰*Ti* с имеющимися экспериментальными данными показывает, что использование связи прямых реакций подхвата нуклона с «полупрямыми» резонансными реакциями позволяет получить реалистичные результаты.

- 1. R.Sutton, M.N.Thompson et al // Nucl.Phys. A.1980.V. 339. P.125
- 2. R.E.Pywell, M.N.Thompson // Nucl.Phys. A. 1979.V.318.P.461
- 3. R.E.Pywell, M.N.Thompson, R.A.Hicks // Nucl.Phys. A. 1979.V.325.P.116
- 4. N.G.Goncharova, N.P.Yudin //Phys. Lett. B. 1969.V.29.P.272
- 5. P.J.Plauger, E.Kashy // Nucl. Phys. A. 1970.V.152.P.609
- 6. R.O.Akyűz, S.Fallieros // Phys.Rev.Lett.1971.V.27.P.1016