ФОТОРАСЩЕПЛЕНИЕ ТЯЖЕЛЫХ ЯДЕР

С. Ю. Трощиев

Научно-исследовательский институт ядерной физики МГУ E-mail: sergey.troschiev@googlemail.com

Рис. 1. Сечения фотопоглощения на ядрах ⁶Li, ¹⁶O, ³²S, ⁴⁰Ca, ⁹⁰Zr, ¹⁵⁹Tb, ²⁰⁸Pb, ²³⁵U.

Исследование взаимодействия фотонов с атомными ядрами продолжается несколько десятков лет, но, несмотря на это, многие принципиальные вопросы структуры и динамики атомных ядер остаются открытыми. Процесс возбуждения ДГР и его особенности: изоспиновое расщепление, конфигурационное расщепление, деформационное расщепление – исследованы сравнительно хорошо. Однако в области энергии на спаде ДГР ситуация изучена значительно хуже. Основная причина в том, что в этой области энергии преобладает распад возбужденного состояния ядра с испусканием нескольких нейтронов. Традиционно фотоядерные реакции в области ДГР исследовались в экспериментах с использованием нейтронных детекторов. Из-за низкой эффективности одновременной регистрации нескольких частиц в конечном состоянии фотоядерные реакции при энергии $E_{\gamma} \ge 20$ МэВ исследованы плохо, практически отсутствуют данные о реакциях с вылетом более трех нейтронов, а сечения реакций с вылетом двух нейтронов, измеренные в разных лабораториях, часто отличаются в 1.5–2 раза.

В настоящей работе изучаются фотоядерные реакции на пучках тормозных фотонов с энергией E_{γ} до 67.7 МэВ. При таких энергиях происходят реакции с вылетом до 7 нейтронов из ядра. Целью работы является получение новых экспериментальных данных о фотонуклонных реакциях на стабильных изотопах тантала, золота, ртути и свинца.

Методика эксперимента

Эксперимент по исследованию фотоядерных реакций в области ДГР проводился по гамма-активационной методике. Пучок электронов из разрезного микротрона RTM-70 [1] с энергией E^m попадал на вольфрамовую тормозную мишень, в которой генерировалось тормозное гамма-излучение. За тормозной мишенью располагался образец исследуемого вещества.

Рис. 2. Схема эксперимента. 1 – ускоритель, 2 – пучок электронов, 3 – тормозная мишень, 4 – гамма-излучение, 5 – исследуемый образец, 6 – HPGe детектор.

Под действием тормозных гамма-квантов в образце проходили фотонуклонные реакции. В результате некоторых реакций образовывались радиоактивные изотопы – происходила активация образца.

После облучения спектр наведенной активности образца измерялся детектором из сверхчистого германия. В измеренном спектре выделялись максимумы, образующиеся при регистрации гамма-квантов наведенной активности. Идентификация максимумов проводилась по их энергии и по скорости их уменьшения в спектрах остаточной активности.

Выход реакции $Y(E^{\max})$ связан со спектром тормозных фотонов, падающих на образец, $W(E, E^{\max})$ и сечением реакции $\sigma(E)$ соотношением

$$Y(E^{\max}) = k \int_{o}^{E^{\max}} \sigma(E) W(E, E^{\max}) dE,$$

где *k* – коэффициент, характеризующий массу и размер образца и ток ускорителя. В эксперименте выход реакции определялся соотношением

$$Y(E^{\max}) = \frac{\lambda A}{nI\varepsilon(1-e^{-\lambda t_i})e^{-\lambda t_d}(1-e^{-\lambda t_m})},$$

где λ – постоянная распада образующегося в реакции изотопа, n – процентное содержание исходных ядер в образце ε – эффективность регистрации германиевым детектором соответствующей гамма-линии в спектре остаточной активности образовавшихся изотопов [2], t_i – время облучения, t_d – время облучения концом началом измерения между И спектра, *t*... продолжительность измерения спектра, А – количество отсчетов детектора, соответствующих выбранной гамма-линии спектра остаточной активности образца, *I* – интенсивность линий в спектре гамма-квантов дочерних ядер, при бета-распадах продуктов реакций. образующихся При расчетах использовались интенсивности гамма-переходов [3]. Для каждого из образцов моделирование GEANT4 [4] было проведено И была рассчитана эффективность регистрации гамма-квантов с учетом самопоглощения в образце.

Анализ результатов

Измеренные выходы фотонуклонных реакций приведены в табл. 1–4. Все выходы нормировались на выходы соответствующих реакций: на изотопе ¹⁸¹Та на выход реакции ¹⁸¹Та(γ , n)^{180g.s.}Та, на изотопе ¹⁹⁷Au на выход реакции ¹⁹⁷Au(γ , n)¹⁹⁶Au, на изотопах ртути на выход реакции ¹⁹⁶Hg(γ , n)¹⁹⁵Hg, на изотопах свинца на выход изотопа²⁰³Pb.

	$J_{\!f}^P$	Выход У							
Реакция		Облучение 1	Облучение 2	KM [5]	TALYS [6]	[7]	[8]	[9]	
181 Ta(γ , n) 180 g.s.Ta	1+	1	1	1	0.93	1	1	1	
181 Ta(γ , n) 180m Ta	9-			1	0.07		1	1	
181 Ta(γ , 2n) 179 Ta	$7/2^{+}$	0.34 ± 0.07		0.29	0.32	0.42	0.24	0.37	
181 Ta(γ , 3n) 178 g.s.Ta	1^{+}	$(1.8 \pm 0.4) \cdot 10^{-2}$	$(2.0 \pm 0.4) \cdot 10^{-2}$	24.10^{-2}	$2.7.10^{-2}$		2.10^{-2}		
181 Ta(γ , 3n) 178m Ta	(7 ⁻)	$(5\pm1)\cdot10^{-3}$	$(5\pm1)\cdot10^{-3}$	2.4.10	2.7.10		2.10		
181 Ta(γ , 4n) 177 Ta	$7/2^{+}$	$(1.7 \pm 0.5) \cdot 10^{-2}$	$(1.8 \pm 0.5) \cdot 10^{-2}$	$1.0 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$				
181 Ta(γ , 5n) 176 Ta	$(1)^{-}$	$(5 \pm 1) \cdot 10^{-3}$	$(5 \pm 1) \cdot 10^{-3}$	$3.7 \cdot 10^{-3}$	$3.5 \cdot 10^{-3}$				
181 Ta(γ , 6n) 175 Ta	7/2+	$(1.4 \pm 0.3) \cdot 10^{-3}$	$(1.3 \pm 0.3) \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$				
181 Ta(γ , 7n) 174 Ta	3+			$6 \cdot 10^{-5}$	6.10^{-5}				
181 Ta(γ , p) 180 g.s.Hf	0+			7.10^{-3}	8·10 ⁻⁴				
181 Ta(γ , p) 180m Hf	8-	$(5 \pm 1) \cdot 10^{-4}$	$(5 \pm 1) \cdot 10^{-4}$	/*10	$3 \cdot 10^{-5}$				
181 Ta(γ , pn) 179 g.s.Hf	9/2+			5.10^{-3}	1.10-3				
181 Ta(γ , pn) 179m Hf	$25/2^{-}$	$(4 \pm 3) \cdot 10^{-5}$		5.10	1.10				

Табл. 1. Нормированные выходы фотонуклонных реакций на ядре¹⁸¹Та. Указаны спины и четности продуктов реакций J_f^P . Спин-четность ¹⁸¹Та $J_i^P = 7/2^+$.

Реакция Выход реакции	$(\gamma, 2n)^{195}$ Au	$(\gamma, 3n)^{194}$ Au	$(\gamma, \ln)^{196m2}$ Au
наст. раб.	0.17 ± 0.03	$(1.3 \pm 0.5) \cdot 10^{-3}$	$(5 \pm 1) \cdot 10^{-4}$
теор. [5]	0.15	$2.0 \cdot 10^{-3}$	
эксп. [10]	0.12	$1.2 \cdot 10^{-3}$	
эксп. [11]	0.18		
оцен. [12]	0.14	$1.4 \cdot 10^{-3}$	

Табл. 2. Относительные выходы фотонейтронных реакций на ¹⁹⁷*Аи.*

Исследование фотонуклонных реакций на изотопах ртути позволило реакций (γ, n) на соседних изотопах. Согласно сравнить выходы комбинированной модели, сечения реакций (у, n) в области ДГР практически не отличаются на соседних изотопах Hg, поэтому рассчитанные выходы совпадают с точностью 10%. Однако измеренные выходы реакций (у, п) на изотопах ^{196, 198, 204} Hg равняются соответственно 1, 1.36 и 1.22 для $E^{\text{max}} = 19.5$ МэВ и 1, 1.42 и 1.16 для $E^{\text{max}} = 29.1$ МэВ (табл. 1–4). Отклонение от рассчитанных на основе комбинированной модели выходов превышает величину погрешности эксперимента. Это отклонение может быть объяснено неточностью в описании сечения реакции (γ, n) в области от порога реакции до максимума ДГР в комбинированной модели. За счет того, что в тормозных пучках с максимальными энергиями $E^{\text{max}} = 19.5$ МэВ и $E^{\text{max}} = 29.1$ МэВ фотонов с энергиями ~10 МэВ в 2-5 раз больше, чем фотонов с энергиями ~15 МэВ, даже малое отклонение в определении сечения реакции в этой энергетической области может приводить к значительным ошибкам в рассчитанном выходе.

			Спин, четность J^{π}		Выход реакции				
Начальное ядро Реакция	Реакция	кция Конечное	Начальное	Конечное ядро		Эксперимент		Расчет [5]	
	r ·	ядро	Осн. сост.	Изомер. сост.	$E^{\text{max}} = 19.5$ M $_{3}\text{B}$	$E^{\text{max}} = 29.1$ МэВ	$E^{\text{max}} = 19.5$ M \ni B	$E^{\text{max}} = 29.1$ M \ni B	
²⁰⁴ Hg	(γ, n)	²⁰³ Hg	0+	5/2-		1.22 ± 0.24	1.16 ± 0.23	1.05	0.99
200110	(a, n)	¹⁹⁹ Hg	0+	1/2-				1.06	1.10
(γ, n)	(y, n)	^{199m} Hg			13/2+	0.087 ± 0.018	0.085 ± 0.017	1.00	
¹⁹⁸ Hg (γ, n)	(a, n)	¹⁹⁷ Hg	0+	1/2-		1.26 ± 0.26	1.27 ± 0.29	1.02	1.01
	(Ÿ, II)	^{197m} Hg			13/2+	0.10 ± 0.02	0.15 ± 0.03	1.02	
¹⁹⁶ Hg (γ, n)	(a, p)	¹⁹⁵ Hg	0+	1/2-		0.90 ± 0.17	0.88 ± 0.20	1	1
	(ץ, 11)	^{195m} Hg			13/2+	0.10 ± 0.03	0.12 ± 0.03	1	
²⁰² Hg	(γ, p)	²⁰¹ Au	0 ⁺	3/2+		< 10 ⁻⁴	$(1.4\pm 0.7)10^{\text{-}3}$	5 10 ⁻⁵	7 10 ⁻⁴
²⁰¹ Hg	(v, n)	²⁰⁰ Au	3/2-	1(-)		$(2.3\pm 0.6)10^{4}$	$(2.4\pm 0.5)10^{\text{-}3}$	0.7.10-4	8.4 10 ⁻⁴
Hg (γ, p)	(y, p)	^{200m} Au	5/2	1()	12-	< 4 10 ⁻⁶	< 10 ⁻⁵	0.7 10	
²⁰⁰ Hg	(γ, p)	¹⁹⁹ Au	0 ⁺	3/2+		$(4.6 \pm 1)10^{-4}$	$(2.8\pm 0.6)10^{\text{-3}}$	1.0 10 ⁻⁴	1.1 10 ⁻³
¹⁹⁹ Hg	(γ, p)	¹⁹⁸ Au	1/2-	2-		$(3.9\pm 0.8)10^{4}$	$(2.7\pm 0.5)10^{\text{-}3}$	1 5 10-4	1 2 10-3
		^{198m} Au			(12)	< 1 10 ⁻⁶	< 10 ⁻⁵	1.5 10	1.5 10
¹⁹⁸ Hg	$(\gamma,n+p)$	¹⁹⁶ Au	0+	2-		< 2 10 ⁻⁶	$(6 \pm 2)10^{-5}$	10 ⁻⁹	7 10-4

Табл. 3. Измеренные и рассчитанные в рамках модели [5] выходы фотоядерных реакций на стабильных изотопах Hg.

Табл. 4. Измеренные и рассчитанные [5] суммарные выходы продуктов фотонуклонных реакций на естественной смеси изотопов Pb. Выходы нормированы на выход изотопа ²⁰³ Pb. Указано разделение каналов образования конечных изотопов в результате фотонуклонных реакций на различных начальных изотопах, основанное на расчете в

Изотоп, образующийся в результате	Суммарный выход Y_f , эксп.	Суммарный выход Y_f , [5]	Доля полного выхода, обусловленная реакцией на начальном стабильном изотопе				
фотонуклонных реакции	-	_	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	
²⁰³ Pb	1	1	0.68	0.19	0.07	0.05	
²⁰¹ Pb	$3.9 \cdot 10^{-2}$	$3.9 \cdot 10^{-2}$	0.264	0.658	0.076	0.002	
²⁰⁰ Pb	$7.9 \cdot 10^{-3}$	$9.2 \cdot 10^{-3}$	0.535	0.458	0.007	< 0.001	
²⁰² T1	$1.1 \cdot 10^{-2}$	$0.57 \cdot 10^{-2}$	0.279	0.623	0.094	0.004	
^{202m} Pb	$6.9 \cdot 10^{-3}$						
^{204m} Pb	$3.8 \cdot 10^{-2}$						

рамках комбинированной модели [5].

Проведенные в настоящей работе эксперименты по измерению выходов фотонуклонных реакций различной множественности на изотопах ¹⁸¹Та и ¹⁹⁷Аи позволяют косвенным образом оценить измеренные сечений этих реакций. В обоих случаях выходы, рассчитанные на основе сечений, измеренных в лаборатории в Ливерморе, оказываются больше, чем выходы, рассчитанные основе сечений, измеренных в лаборатории в Саклэ. Измеренные в настоящей работе значения выходов реакций 181 Ta(γ , 2n) и 197 Au(γ , 2n) лежат между значениями выходов, рассчитанными на основе данных Саклэ и Ливермора. В случае реакции 197 Au(γ , 2n) измеренный выход равен 0.17 и практически точно подтверждает данные Ливермора (0.18). Измеренный выход реакции ¹⁸¹Та(у, 2n) равен 0.34 и отличается от данных Ливермора (0.42) и Саклэ (0.24) приблизительно на 30%. В работе [9] проведена оценка экспериментально измеренных сечений фотонуклонных реакций на ядре ¹⁸¹Та. Выход, рассчитанный на основе оцененных данных, равен 0.29, что в пределах погрешности соответствует измеренному выходу. Таким образом, эксперимент по измерению остаточной активности косвенно подтверждает оценку [9].

Измеренные выходы реакций 181 Ta(γ , 3n) и 197 Au(γ , 3n) в пределах погрешности совпадают с выходами, рассчитанными на основе данных Саклэ. Сечения реакции (у, 3n) для исследуемых в настоящей работе ядер не были измерены в Ливерморе.

Исследование протонного канала распада ДГР, проведенное при помощи методики измерения остаточной активности, а также основанное на данных других работ на результатах теоретических расчетов, И подтвердило решающую роль изоспинового расщепления ДГР ДЛЯ возможности фотопротонных реакций в тяжелых ядрах, так как распад $T_>$ -компоненты ДГР возможен лишь с вылетом протона. Указанием на это является сравнение измеренных экспериментально И рассчитанных сечений И выходов фотопротонных реакций на тяжелых ядрах: расчет выходов фотопротонных реакций на изотопах ртути при максимальной энергии тормозного спектра 29.1 МэВ В комбинированной модели, учитывающей изоспиновое расщепление ДГР, предсказывает, что доля фотопротонного канала реакции составляет ~10⁻³, что хорошо согласуется с экспериментально измеренными выходами.

Начальное ядро	Реакция	E ^{max} , МэВ	Конечное ядро	J_i^P	J_f^P	Выход	Изомерное отношение
¹⁸¹ Ta	$(\gamma, 3n)$	67.7	^{178g.s.} Ta	$7/2^{+}$	1+	0.018	0.28
	(1, 511)	07.7	Та		7-	0.005	
197 • •	(α, n)	20.1	^{196g.s.} Au	$2/2^{+}$	2-	≈1	0.0005
Au	(γ, 11)	29.1	^{196m} Au	5/2	12-	0.0005	0.0005
¹⁹⁸ Hg	(γ, n)	19.5	^{197g.s.} Hg	0^+	1/2-	1.26	0.08
			^{197m} Hg		$13/2^{+}$	0.1	
19611.0	(a	10.5	^{195g.s.} Hg	Ω^+	1/2-	0.9	0.11
Hg	(y, n)	19.3	^{195m} Hg	0	$13/2^{+}$	0.1	0.11
198110	(a	20.1	^{197g.s.} Hg	Ω^+	1/2-	1.27	0.12
пg	(y, n)	29.1	^{197m} Hg	U	$13/2^{+}$	0.15	0.12
¹⁹⁶ Hg	(γ, n)	29.1	^{195g.s.} Hg	Ω^+	1/2-	0.88	0.14
			^{195m} Hg	U	$13/2^{+}$	0.12	0.14

Табл. 5. Выходы основных и изомерных состояний в фотонуклонных реакциях.

настоящей работе наблюдалось образование одновременно и B основных, и изомерных состояний ядер в четырех фотонуклонных реакциях: ¹⁸¹Ta(γ , 3n), ¹⁹⁷Au(γ , n), ¹⁹⁸Hg(γ , n), ¹⁹⁶Hg(γ , n). Спины и четности начальных и конечных ядер, а также выходы соответствующих реакций и изомерные табл. 5. Полученные отношения приведены В данные полностью подтверждают сильную связь между спинами начального ядра И образующегося изомера и вероятностью образования этого изомера. При больших значениях разности спинов вероятность образования изомера сразу после вылета нейтронов реакции чрезвычайно мала, так как из-за центробежного барьера нейтрон, как правило, уносит из ядра сравнительно небольшой орбитальный момент. Поэтому в таком случае изомер образуется главным образом в результате каскадов гамма-переходов из высоко лежащих возбужденных состояний ядра-продукта, образующихся сразу после фотонейтронной реакции.

Заключение

Впервые измерены спектры гамма-квантов распада ядер, образующихся при облучении естественной смеси изотопов Та тормозным пучком с $E^{\text{max}} = 67.7 \text{ МэВ}$, изотопа ¹⁹⁷Аи тормозным пучком с $E^{\text{max}} = 29.1 \text{ МэВ}$, естественной смеси изотопов Hg тормозными пучками с $E^{\text{max}} = 19.5$ и 29.1 МэВ и естественной смеси изотопов Pb тормозным пучком с $E^{\text{max}} = 67.7 \text{ МэB}$. На основе измеренных спектров остаточной активности впервые получены выходы 28 фотоядерных реакций.

Проведено сравнение полученных экспериментальных данных с результатами расчетов по современным теоретическим моделям описания фотоядерных реакций и с результатами известных экспериментальных работ по измерению сечений фотоядерных реакций в области ДГР. Была оценена надежность разделения фотонуклонных реакций различной множественности в экспериментах на пучках квазимонохроматических фотонов.

В реакциях 181 Ta(γ , 3n), 197 Au(γ , n), 198 Hg(γ , n), 196 Hg(γ , n) наблюдалось образование ядер-продуктов в основном и в изомерном состояниях. Показана

связь полученных изомерных отношений для этих реакций со спинами начальных ядер и ядер-продуктов.

1 Shvedunov V. I., Ermakov A. N., Gribov I. V. // Nucl. Instrum. Methods in Phys. Research A **550**, P. 39 (2005).

2 С. Ю. Трощиев, в сб.: Труды X межвузовской научной школы молодых специалистов "Концентрированные потоки энергии в космической технике, электронике, экологии и медицине", Москва, 2009, под ред. Б. С. Ишханова и Л. С. Новикова (Книжный дом Университет (КДУ), Москва, 2009), с. 174.

3 Nuclear wallet cards. National Nuclear Data Center (http://www.nndc.bnl.gov/)

4 S. Agostinelli, J. Allison, K. Amako, et al., Nucl. Instrum. Methods A 506, 250 (2003).

5 Ишханов Б. С., Орлин В. Н. // ЯФ 74. С. 21 (2011).

6 A. J. Koning, S. Hilaire and M. C. Duijvestijn, in *Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, Apr. 22–27, 2007, Ed. by* O. Bersillon, F. Gunsing, E. Bauge *et al.* (EDP Sciences, 2008), p. 211.

7 Bramblett R. L., Caldwell J. T., Auchampaugh G. F., Fultz S. C. // Phys. Rev. **129**, P. 2723 (1963).

8 Bergere R., Beil H., Veyssiere A. // Nucl. Phys. A121, P. 463 (1968).

9 Варламов В. В., Песков Н. Н., Руденко Д. С., Степанов М. Е. // Вопросы атомной науки и техники. Серия: Ядерные константы. № 1-2. С. 48 (2003).

10 Veyssiere A., Beil H., Bergere R., et al. // Nucl. Phys. A159, C. 561 (1970).

11 Fultz S. C., Bramblett R. L., Caldwell T. J., et al. // Phys. Rev. 127, C. 1273 (1962).

12 Варламов В. В., Ишханов Б.С., Орлин В. Н., Трощиев С. Ю. // Изв. РАН. Сер. физ. **74**, С. 874 (2010).