УСКОРИТЕЛЬНЫЙ КОМПЛЕКС НА ЭНЕРГИИ ИОНОВ ДО 500 КЭВ.

Ю.В.Балакшин¹, А.С. Патракеев¹, Д.В.Петров¹, В.С.Черныш¹, А.А. Шемухин¹, П.Н.Черных¹, А.В. Назаров²

¹ Научно-исследовательский институт ядерной физики МГУ; ² Физический факультет МГУ E-mail: av.nazarov@physics.msu.ru

В Лаборатории ионно-пучковых нанотехнологий НИИЯФ МГУ введен в действие ускоритель ионов «High Voltage Engineering Europe» на энергии ионов до

500 кэВ (рис.1). Ускоритель оснащен тремя линиями пучка (рис.2). Одна из этих линий предназначена для имплантации ионов атомной 250, a другая массы ДО для анализа приповерхностных слоев материалов С использованием спектрометрии рассеяния ионов (MEIS). Третья средних энергий линия, находящаяся в завершающей стадии доработки, для диагностики материалов с предназначена помощью метода резерфордовского обратного

Рис.2. Линии пучка. Справа - линия РОР; в центре – линия имплантации; слева – линия СРИСЭ

рассеяния (РОР) ионов с энергиями до

Рис. 1. Ускоритель ионов до 500 кэВ

1 МэВ. Эта линия позволит проводить анализ экспериментов in situ. Кроме того, предполагается расширить возможности комплекса 38 счет введения еще одной дополнительной линий пучка: для проведения экспериментов по распылению в сверхвысоком вакууме. Ускоритель оснащен тремя ионными источниками: газоразрядным, дуоплазматроном, твердотельным которые И получать широкий набор позволяют типов бомбардирующих ионов.

Линия имплантации

Имплантационная линия (рис. 3) позволяет производить имплантацию в мишени площадью до 150x150 мм² с однородностью дозы по этой площади не хуже 99%. Угловое отклонение сканируемого пучка от исходного направления в пределах облучаемой площади невелико. Это позволяет минимизировать, если это необходимо, эффекты каналирования. Камера имплантации оборудована дополнительными оснастками, позволяющими проводить имплантацию в мишени

при температурах от -180°C до 800°C. Остаточное давление в камере в процессе бомбардировки не превышает 4×10⁻⁶ мбар.

Целью одного ИЗ экспериментов, проводимых С помощью имплантационной линии было создание нанокластеров Si в диэлектрической матрице SiO₂. Для были проведения экспериментов подготовлены образцы, вырезанные монокристаллического пластин ИЗ (100)Si, на поверхности которых термическим окислением был выращен слой SiO₂. На ускорителе были изготовлены три типа

Доза облучения,

 2×10^{16}

 3×10^{16}

 2×10^{16}

см⁻²

частиц; 3 – имплантационная камера

Энергия имплантинованных

ионов Si⁺, кэВ

55

55

85

образцов, в различных режимах имплантации. Характеристики этих режимов приведены в таблице 1. После имплантации с помощью методики РОР удалось

качественно идентифицировать внедренного наличие SiO₂. кремния слое В После имплантации образцы подвергнуты

термическому отжигу. Образцы каждого типа

отжигались в двух разных режимах. Таким образом было получено 6 различных образцов. Время отжига свыше 1000 °С для первой серии составило 10мин, для второй – 40 мин. Отжиг проводился в трубчатой кварцевой печи в атмосфере азота.

Измерение спектров фотолюминесценции ионноимплантированных структур высокотемпературного после отжига проводились на ШКΠ оборудовании Физического Факультета МГУ.

Генерация фотолюминисценции (ФЛ) В исследуемых образцах осуществлялась помощью С облучения Ar лазером с длиной Регистрация волны 488 HM. спектров излучения проводилась с использованием спектрографа MS 3504 I (SOLAR TII) и монохроматора МДР 12 (ЛОМО).

Измерения показали, что ФЛ наблюдается лишь для образца, имплантированного ионами Si⁺ при энергии 55 кэВ с дозой облучения 3×10¹⁶ ион/см², отожженного в течение 10 минут (1-я серия отжига). Спектры ФЛ для трех образцов

2 были 3

Таблица 1. Использованные режимы имплантации

Номер

образца

1

(неимплантированная пленка, имплантированная неотожженная, имплантированная отожженная) представлены на рисунке 4.

Исследовательские линии

Одним из основных методов определения элементного состава модифицированных твердых тел, изучения профилей распределения по глубине примесных или имплантированных атомов, определения состава и толщин слоев в многослойных покрытий, а также процессов взаимодиффузии в этих слоях является метод резерфордовского обратного рассеяния (РОР).

Линия РОР (рис. 5) позволяет проводить исследования, используя ионы водорода или гелия в диапазоне энергий до 1 МэВ. Линия состоит из ионопровода и экспериментальной камеры, которые разделены вакуумным затвором. Откачка камеры рассеяния и ионного тракта производится турбомолекулярным насосом, поддерживающими давление ~10⁻⁶ мбар. Кроме того, камера содержит систему черновой откачки, что позволяет значительно быстрее производить смену образов. Экспериментальная камера содержит гониометрическую систему для крепления и точного вращения образца, систему мониторирования анализирующего пучка ионов. Угловые перемещения производятся с помощью шаговых двигателей, причём

вращение осуществляется с шагом $0,02^{\circ},$ а вертикальное перемещение С шагом 0,1мм В диапазоне 20мм. Точность выполнения поворотов на большие углы составляет не 1%. хуже Угловое положение детектора относительно можно мишени изменять В плоскости

рассеяния по окружности, центр которой совпадает с центром вращения гониометра. Точность установки угла рассеяния составляет 0,5°.

Однако в связи с постоянным уменьшением размеров элементов интегральных схем, диктуемого требованиями современных технологий, стандартный метод РОР не всегда позволяет исследовать такие объекты с необходимым разрешением по глубине.

Для исследования объектов нашей лаборатории этих в создан экспериментальный комплекс, основанный на методике спектроскопии ионов средних энергий (Medium Energy Ion Spectrometry, MEIS). Линия MEIS (рис. 6) позволяет исследовать состав и толщину границ разделов многослойных структур с

разрешением методом высоким спектроскопии рассеяния ионов средних энергий. Линия состоит из ионопровода и экспериментальной камеры, которые разделены вакуумным затвором, а так же шлюзовой камеры для смены образцов, которая отделена от экспериментальной камеры вакуумным затвором. Диаметр пучка ионов на мишени составляет 4 мм. камера Экспериментальная содержит гониометрическую систему для крепления точного вращения образца, систему И мониторирования анализирующего пучка электростатический ИОНОВ, анализатор, набор микроканальных пластин И позиционно чувствительный детектор. Разрешение по элементам данной методики позволяет судить об изотопном составе. Разрешение по глубине вплоть до одного - двух атомных монослоев.

демонстрации преимущества Для этого метода перед стандартным методом проведены POP были серии экспериментов. B качестве исследовательского образца была

рассмотрена тонкопленочная структура MgO / Fe / BaTiO₃, созданная методом импульсного лазерного осаждения. Ha массивной подложке MgO был выращен слой Fe (~12 нм), затем слой BaTiO₃ (~5 нм). На рисунках 6 и 7 представлены соответственно РОР и СРИСЭ спектры данной структуры. С помощью методики РОР не удалось разрешить пики Ті и Fe, кроме того, по данному спектру РОР мы можем дать только интегральную оценку количества бария в структуре, так как разрешение глубине по полупроводникового детектора в два раза

Рис. 6. Камера линии MEIS

1800 Ę. 1400 1200

превышает заявленную толщину слоя BaTiO₃ С помощью методики СРИСЭ нам удалось разрешить пики Ті и Fe, а также удалось рассчитать толщину слоя титаната бария, составившую 64Å.

Резюмируя, можно сказать, что в Лаборатории ионно-пучковых нанотехнологий НИИЯФ МГУ можно как создавать структуры методом ионной имплантации, так и исследовать различные объекты ионно-пучковыми методиками.