

NICA Вселенная в лаборатории

Объединенный Институт Ядерных Исследований

г. Дубна, Московская область

Шандов М. М.

Лектор

Шандов Михаил Михайлович

- Научный сотрудник
- Научно-Экспериментальный Отдел Сверхпроводящих Магнитов и Технологий
- Лаборатория Физики Высоких Энергий
- Объединенный Институт Ядерных Исследований
- *Проект:* NICA, FAIR
- Область интересов: производство сверхпроводящих магнитов, исследования в области магнитных полей (измерения, расчёты, моделирование и т.д.), динамика пучков заряженных частиц (в том числе нелинейная)

Объединенный Институт Ядерных Исследований

Объединенный институт ядерных исследований (ОИЯИ) международная межправительственная организация основана в 1956г. соглашением 12 стран

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

19 Стран-участниц Азербайджан, Армения, Беларусь, Болгария, Вьетнам, Грузия, Египет, Казахстан, Северная Корея, Куба, Молдова, Монголия, Польша, Россия, Румыния, Словакия, Узбекистан, Украина, Чешская Республика

+

5 ассоциированных Венгрия, Германия, Италия, Сербия, Южная Африка

Лаборатории

ОИЯИ — это 7 лабораторий; каждая сопоставима с большим научным институтом

Лаб. ядерных проблем им. В. П. Джелепова

Лаб. ядерных реакций им. Г. Н. Флерова

Лаб. физики высоких энергий им. В. И. Векслера и А. М. Балдина

Лаб. нейтронной физики им. И. М. Франка

Лаборатория радиационной биологии

Лаборатория теоретической физики им. Н. Н. Боголюбова

Лаборатория информационных технологий

ЛФВЭ – исследовательский центр для проведения широкого круга актуальных работ по физике элементарных частиц и атомного ядра. Лаборатория осуществляет широкое международное научное сотрудничество с СЕRN, физическими центрами России, стран-участниц ОИЯИ, США, ФРГ, Японии и других стран.

Большой Взрыв

Эволюция Вселенной

Фазовая Диаграмма Адронной Материи

Проблема Горячей и Плотной Барионной Материи

Эксперимент

Мишень (выведенный пучок)

 $E_{cm} \approx \sqrt{2E_1(m_{02}c^2)}$ Много энергии теряется в мишени и Вс. только часть идет на эксперимент

Коллайдер (Встречные пучки)

$$E_{cm} \approx 2\sqrt{E_1E_2} = 2E \ if E_1 = E_2$$

ся энергия идет на эксперимент

От Синхрофазатрона к Коллайдеру Тяжелых Ионов

2023 **NICA** Сверхпроводящий коллайдер тяжелых ионов

Исследования ядерной материи при экстремальных плотностях

1993 Нуклотрон Первый сверхпроводящий ускоритель тяжелых ионов

ПО

исследования релятивистской ядерной физике

1957 Синхрофазотрон 10 ГэВ протонный сихротрон – лидер

по энергии

Начало эры физики высоких энергий

В.И.Векслер – автор Принципа автофазировки (1944)

Системы Ускорителя

Сверхпроводимость

 $R \to 0$: Отсутствует потребление электроэнергии (необходима только для охлаждения); высокие плотности тока; удешевление Ампер-витка

• снижение стоимости работы; сохранение энергии; магниты меньше, легче, дешевле; снижение капитальных затрат; сильные магнитные поля экономически реализуемы ⇒ возможно реализовать новые исследования; и т.д.

	Энергия СЦМ, ТэВ	Периметр, км	Цена, В\$	Срок работы, гг.
Tevatron	1,96	6,3	0,45	1985-2011
УНК	6	20,8	≈2	Закрыт 1998
SSC	40	87,1	11,8	Закрыт 1993
LHC	14	26,7	7	C 2008
RHIC	1,4	3,83	0,62	C 2000
FCC	100	100	≈20	2035?

Фазовая Диаграмма Адронной Материи

Линейные Ускорители

ЛУ-20

q/A	0.5	0.3
Энергия инжекции, кэВ/н	61.8	103
Энергия вывода, МэВ/н	5	
КПД, %	~75	~50
Частота, МГц	145.2	
Рабочий режим	2 <i>f</i>	βλ

A/q	6.25 (Au ³²⁺)
Энергия инжекции, кэВ/н	17
Энергия вывода, МэВ/н	3.2
КПД, %	≥80
Частота, МГц	100.625

HILac

СП Синхротроны

Бустер

Оптическая структура	DFO-ячейки	
Магнитная жесткость, Тл*м	25	
Периметр, м	211.2	
Энергия вывода, Аи ³¹⁺ , МэВ/н	600	
Дисперсия по импульсу, Др/ р	± 0.010	
Интенсивность, ионов	2-4 •10 ⁹	

Оптическая структура	FODO-ячейки	
Магнитная жесткость, Тл*м	45	
Периметр, м	251.5	
Энергия вывода, Au ⁷⁹⁺ , ГэВ/н	4.5	
Дисперсия по импульсу, Др/р	± 0.010	
Интенсивность, ионов	2• 10 ⁹	

Нуклотрон

СП Коллайдер

Периметр, м	503.04		
Оптическая структура	FODO-ячейки		
Кол-во банчей в кольце		22	
Дисперсия по импульсу, Др /р	± 0.010		
Энергия, Аи ⁷⁹⁺ , ГэВ/н	1	3	4.5
Светимость, см ⁻² ·с ⁻¹	0.6·10 ²⁵	1.10^{27}	1.10^{27}
Время накопления, с	160	460	1800

MPD и BM@N

Прикладные исследования

- исследования электроники (без корпуса) 3,2 МэВ/н
- исследования электроники (в корпусе), радиобиология 150-350 МэВ/н

Международное Сотрудничество NICA

Дополнительные материалы

annes 🖬 🖬 🔡 🖬 🖬 🖬 🖬

Ради Чего?

Sppbar S

HERA

(ep)

LEP/SLC

cyclotron

1980 1990 2000

electrostatic

generator

rectifier generator

10 MeV

1 MeV

100 keV

1930

1940

1950

1960

График "Ливингстона"

1970

«Напомню, что ускорение частиц до энергии 10¹⁵ГэВ, отвечающей «великому объединению» сильного и электрослабого взаимодействий, потребовало бы сооружения ускорителя размером с Солнечную систему. А если бы мы хотели продвинуться до «планковской» энергии 10¹⁹ ГэВ (на этом рубеже становятся существенными квантовогравитационные эффекты), то пришлось бы строить ускоритель, кольцо которого имело бы протяженность порядка 10 св. лет.». А.Н. Сисакян, Лекция по физике частиц

СП Супер-Коллайдеры

Фазовая Диаграмма Вещества

