4. ПРОЦЕСС р³Н ЗАХВАТА

Process of the p³H capture

Введение

Продолжая изучение термоядерных реакций [59] на основе потенциальной кластерной модели с разделением орбитальных состояний по схемам Юнга [94] рассмотрим возможность описания астрофизического S - фактора радиационного р³Н захвата при энергиях до 1 кэВ. Эта реакция представляет определенный интерес, как с теоретической, так и с экспериментальной точки зрения для понимания в целом динамики фотоядерных процессов с легчайшими атомными ядрами при низких энергиях. Поэтому продолжаются экспериментальные исследования этой реакции и сравнительно недавно были получены новые данные для полных сечений радиационного р³Н захвата и астрофизического S - фактора в области энергий от 50 кэВ до 5 МэВ и при 12 и 39 кэВ (с.ц.м.).

Эта реакция, возможно, играла определенную роль на дозвездной стадии развития Вселенной [2], когда, при температуре порядка 10⁹ К, становились возможны следующие реакции (первичный нуклеосинтез)

```
\begin{array}{l} 1. \ p+n \rightarrow {}^{2}H + \gamma \ , \\ 2^{-2}H + p \rightarrow {}^{3}He + \gamma \ , \\ 3. \ {}^{2}H + {}^{2}H \rightarrow {}^{3}He + n \ , \\ 4. \ {}^{2}H + {}^{2}H \rightarrow {}^{3}He + n \ , \\ 5. \ {}^{3}H + p \rightarrow {}^{3}He + n \ , \\ 6. \ {}^{3}He + n \rightarrow {}^{3}He + \gamma \ , \\ 8. \ {}^{3}He + n \rightarrow {}^{4}He + \gamma \ , \\ 8. \ {}^{3}He + n \rightarrow {}^{4}He + \gamma \ , \\ 9. \ {}^{2}H + {}^{3}H \rightarrow {}^{4}He + n \ , \\ 10. \ {}^{2}H + {}^{2}H \rightarrow {}^{4}He + \gamma \ . \end{array}
```

Данная ситуация могла реализоваться при времени жизни Вселенной порядка 10^2 с., когда число протонов и нейтронов было сопоставимо – примерно 0.2 нейтронов от числа протонов [2,3,7,8]. Последняя реакция №10 протекает с относительно малой вероятностью, поскольку *E*1 процесс запрещен правилами отбора по изоспину, которые приводят к

множителю $\left(\frac{Z_1}{m_1^J} + (-1)^J \frac{Z_2}{m_2^J}\right)$ при J = 1, который определяет

выражения (2.5), а вероятность *E*2 переходов обычно на полтора - два порядка меньше [36].

Примерно к 200 с. [3] эпоха первичного нуклеосинтеза заканчивается – практически все нейтроны оказываются связаны в ядра ⁴He, которых относительно ядер ¹H оказывается примерно 25%. Относительное содержание ²H и ³He находятся примерно на уровне 10^{-5} от ¹H [3].

Перейдем теперь к непосредственному рассмотрению астрофизического *S* - фактора радиационного р³Н захвата в потенциальной кластерной модели при сверхнизких энергиях. Построим вначале потенциалы межкластерного взаимодействия для процессов рассеяния и связанных состояний и приведем их классификацию по схемам Юнга.

4.1 Потенциалы и фазы рассеяния

Система p^{3} Н является смешанной по изоспину, так как имеет проекцию $T_z = 0$, а значит возможны значения полного изоспина T = 0 и 1. В этой системе триплетные и синглетные фазы, а значит, и потенциалы эффективно зависят от двух значений изоспина. Смешивание по изоспину приводит к смешиванию орбитальных межкластерных состояний по схемам Юнга. В частности, известно, что в синглетном спиновом состоянии разрешены две орбитальные схемы Юнга {31} и {4} [94]. В работах [94,96] было показано, что смешанные по изоспину синглетные фазы p^{3} Н рассеяния могут быть представлены в виде полусуммы чистых по изоспину синглетных фаз

$$\delta^{\{T=1\}+\{T=0\}} = 1/2\delta^{\{T=1\}} + 1/2\delta^{\{T=0\}} , \qquad (4.1)$$

что эквивалентно следующей записи для фаз рассеяния с указанием схем Юнга:

$$\delta^{\{4\}+\{31\}} = 1/2\delta^{\{31\}} + 1/2\delta^{\{4\}} .$$

Чистые фазы со схемой Юнга {31} соответствуют T = 1, а фазы с {4} изоспину T = 0. Поскольку система р³Не при $T_z = 1$ является чистой по изоспину с T = 1, то из выражения (4.1), на основе известных чистых фаз рассеяния с T = 1 в р³Не системе [97-99] и смешанных р³Н фаз с изоспином T = 0 и 1 [103-105] выделяются чистые по изоспину фазы р³Н рассеяния с T = 0 и на их основе строятся соответствующие чистые потенциалы р³Н взаимодействия [96]. В таком подходе предполагается, что чистые фазы с изоспином T = 1 в р³Н системе можно сопоставить фазам с T = 1 в р³Не канале.

Для выполнения расчетов фотоядерных процессов в рассматриваемой системе ядерная часть межкластерного потенциала $p^{3}H$ и $p^{3}He$ взаимодействий представляется в виде (2.7) с точечным кулоновским членом. Потенциал каждой парциальной волны, как для предыдущей системы $p^{2}H$, строился так, чтобы правильно описывать соответствующую парциальную фазу упругого рассеяния [95].

В результате были получены потенциалы p^{3} Не взаимодействий для процессов упругого рассеяния чистые по изоспину с T = 1, параметры которых приведены в табл.4.1 [94,96]. Синглетная чистая по изоспину S - фаза упругого p^{3} Не рассеяния, использованная в дальнейшем для получения синглетных p^{3} Н фаз с изоспином T = 0, показана непрерывной линией на рис.4.1а вместе с экспериментальными данными из работ [97,98,99].

Табл.4.1. Синглетные потенциалы вида (2.7) для p^{3} Не рассеяния, чистые по изоспину с *T* = 1 [94,96].

Система	L	<i>V</i> ₀ , МэВ	$\alpha, \Phi M^{-2}$	<i>V</i> ₁ , МэВ	γ, Фм ⁻¹
p ³ He	^{1}S	-110.0	0.37	+45.0	0.67

Дубовиченко С.Б. Термоядерные процессы Вселенной

Рис.4.1а. Синглетная ¹S - фаза упругого р³Не рассеяния. Экспериментальные данные: [97] – точки, [98] – квадраты, [99] – треугольники

Поскольку имеется несколько различных вариантов фазовых анализов упругого p^{3} Не рассеяния, например, [97,98,99], то для синглетной ${}^{1}P_{1}$ - и триплетной ${}^{3}P_{1}$ - волн, параметры потенциала, приведенные в табл.4.1, подбирались так, чтобы получить определенный компромисс между разными результатами. На рис.4.16 непрерывной линией представлена триплетная ${}^{1}P_{1}$ - фаза упругого p^{3} Не рассеяния с T =1, использованная далее в наших расчетах *E*1 перехода на основное состояние ядра ⁴Не в p^{3} Н канале с T = 0, и экспериментальные данные работ [97,98,99,100,101,102].

Синглетная смешанная по изоспину и схемам Юнга *S* фаза упругого р³Н рассеяния, определяемая из экспериментальных дифференциальных сечений и использованная далее для получения чистых р³Н фаз, для потенциала вида (2.8) с параметрами $V_0 = -50$ МэВ и $\alpha = 0.2 \, \Phi \text{M}^{-2}$ показана непрерывной линией на рис.4.2 вместе с экспериментальными данными работ [103,104,105].

Дубовиченко С.Б. Термоядерные процессы Вселенной

Рис.4.16. Синглетная ¹*P* - фаза упругого р³Не рассеяния. Экспериментальные данные: [97] – точки, [98] – квадраты, [100] – треугольники, [101] – кружки, [99] – открытые квадраты, [102] – открытые треугольники.

Рис.4.2. Синглетная ¹S - фаза упругого р³Н рассеяния. Экспериментальные данные: [103] – точки, [104] – квадраты, [105] – треугольники.

Рис.4.3. Синглетная чистая по схемам Юнга ¹S - фаза упругого р³H рассеяния.

Далее, используя выражение (4.1), для чистого с T = 0 р³Н потенциала (2.8) в ¹S - волне были найдены следующие параметры [96]:

 $V_0 = -63.1 \text{ МэВ и } \alpha = 0.17 \text{ } \Phi \text{M}^{-2}$. (4.2)

На рис.4.3 точками показана чистая по схеме Юнга синглетная ${}^{1}S$ - фаза упругого р³Н рассеяния, а непрерывной линией приведены результаты расчета этой фазы с потенциалом (4.2). Полученные, таким образом, чистые по схеме Юнга взаимодействия можно использовать для расчетов различных характеристик связанного основного состояния ⁴Не в р³Н канале. Степень согласия получаемых при этом результатов для СС с экспериментом будет теперь зависеть только от степени кластеризации данного ядра в рассматриваемом канале.

Полученный в [96] потенциал взаимодействия (4.2) в целом правильно описывает канальную энергию связи р³Н системы (с точностью до нескольких кэВ) и среднеквадратичный радиус ядра ⁴He [96]. С этими потенциалом были выполнены расчеты дифференциальных [94] и полных сечений радиационного p^{3} H захвата, и астрофизических *S* - факторов при энергиях до 10 кэВ [96]. Следует отметить, что на тот момент нам были известны экспериментальные данные по *S* - фактору только в области энергий выше 700 ÷ 800 кэВ [106].

Сравнительно недавно появились новые экспериментальные данные при энергиях от 50 кэВ до 5 МэВ [107] и 12 и 36 кэВ [108]. Поэтому, представляется интересным выяснить – способна ли ПКМ, с полученными ранее синглетным ${}^{1}P$ - потенциалом и уточненным взаимодействием основного ${}^{1}S$ - состояния ядра ⁴Не, описать эти новые, более точные, данные.

Наши предварительные результаты [109] показали, что для расчетов *S* - фактора при энергиях порядка 1 кэВ нужно выполнить те же условия, как в p^2 Н системе [69], которые обсуждались в предыдущем разделе и, в первую очередь, повысить точность нахождения энергии связи ⁴Не в p^3 Н канале. Используя новые, измененные программы, были уточнены параметры потенциала основного состояния p^3 Н системы в ядре ⁴Не (см. табл.4.2), которые отличаются от приведенных в работе [96] примерно на 0.2 МэВ.

Табл.4.2. Чистые по изоспину с T = 0 потенциалы вида (2.8) для $p^{3}H$ [96] взаимодействий в синглетном канале.

Здесь *E*_{cc} – вычисленная энергия связанного состояния, *E*_{эксп.} – ее экспериментальное значение [71].

Сис- тема	L	V_0 , МэВ	α, Φм ⁻²	$E_{\rm cc}$, МэВ	$E_{ m эксп.}$, МэВ
n ³ H	^{1}S	-62.906841138	0.17	-19.81381000	-19.813810
P II	^{1}P	+8.0	0.03	-	-

В основном, это отличие связано с использованием в новых расчетах более точных значений масс частиц р и ³H [35] и более точном описании энергии связи ядра ⁴He в p³H канале. Для этой энергии на основе уточненных значений масс частиц [35] получено значение -19.813810 МэВ, а расчет с рассматриваемым здесь потенциалом дает величину - 19.81381000 МэВ. Точность определения численного значения энергии в таком потенциале по нашей программе, основанной на конечно - разностном методе [24], составляет 10⁻⁸ МэВ.

Поведение «хвоста» волновой функции связанного состояния $p^{3}H$ системы на больших расстояниях проверялась по асимптотической константе (2.10) [37,110], которая на интервале 5 ÷ 10 Фм оказалась равна $C_w = 4.52(1)$. Приведенная ошибка асимптотической константы, как и ранее, определяется ее усреднением по указанному выше интервалу. Известные результаты по извлечению асимптотической константы из экспериментальных данных дают для $p^{3}H$ канала значение 5.16(13) [37]. Для асимптотической константы $n^{3}He$ системы в работе [37] получена величина 5.1(4), которая очень близка к константе $p^{3}H$ канала.

В тоже время, в работах [110] для константы n^{3} Не системы приводится значение 4.1, а для p^{3} Н величина 4.0. Среднее между ними вполне согласуется с нашими результатами. Как видно, существует довольно большое различие данных по асимптотическим константам. Для системы n^{3} Не величина константы находится в интервале 4.1 ÷ 5.5, а для p^{3} Н канала может, по-видимому, принимать значения, примерно, от 4.0 до 5.3.

Для зарядового радиуса ядра ⁴Не получено 1.73 Фм, при радиусах трития 1.63 Фм [70] и протона 0.877 Фм. [35], и экспериментальном значении радиуса ⁴Не 1.671(14) Фм [71] (см. табл.3.2).

Для дополнительного контроля точности определения энергии связи в *S* - потенциале СС из табл.4.2, использовался вариационный метод с разложением волновой функции по неортогональному гауссову базису, который при размерности базиса 10, и независимом варьировании параметров [24], позволил получить энергию связи -19.81380998 МэВ. Асимптотическая константа C_w (2.10) вариационной волновой функции на расстояниях 5 ÷ 10 Фм сохранялась на уровне 4.52(2),

а величина невязок не превышала 10⁻¹¹ [24]. Вариационные параметры и коэффициенты разложения межкластерной радиальной волновой функции, имеющей вид (2.9), приведены в табл. 4.3.

Табл.4.3. Вариационные параметры и коэффициенты разложения радиальной ВФ связанного состояния р³Н системы для ¹S - потенциала из табл.4.2. Нормировка функции с этими коэффициентами на интервале 0 ÷ 25 Фм равна N = 0. 9999999998.

i	β _i	$C_{ m i}$
1	3.775399682294165E-002	-3.553662130779118E-003
2	7.390030511120065E-002	-4.689092850709087E-002
3	1.377393687979590E-001	-1.893147614352133E-001
4	2.427238748079469E-001	-3.619752356073335E-001
5	4.021993911220914E-001	-1.988757841748206E-001
6	1.780153251456691E+000	5.556224701527299E-003
7	5.459871888661887E+000	3.092889292994009E-003
8	1.921317723809205E+001	1.819890982631486E-003
9	8.416117121198026E+001	1.040709526875803E-003
10	5.603939880318445E+002	5.559240350868498E-004

Как уже говорилось в предыдущем разделе, вариационная энергия при увеличении размерности базиса уменьшается и дает верхний предел истинной энергии связи, а конечно разностная энергия при уменьшении величины шага и увеличении числа шагов увеличивается [24]. Поэтому для реальной энергии связи в таком потенциале можно принять среднюю между этими значениями величину -19.81380999(1) МэВ. При этом ошибка определения энергии связи в заданном потенциале двумя использованными выше методами и на основе двух разных компьютерных программ составляет ±0.01 эВ.

Из приведенных результатов видно, что простая двухкластерная р³Н модель с классификацией орбитальных состояний по схемам Юнга позволяет получить вполне разумные значения для таких характеристик связанного состояния ядра ⁴Не, как зарядовые радиусы и асимптотические константы. Эти результаты могут свидетельствовать в пользу сравнительно большой степени кластеризации этого ядра в p^{3} Н канал. Поэтому, такая модель вполне может привести к разумным результатам при вычислении астрофизических *S* факторов в области низких энергий, к рассмотрению которых мы сейчас переходим.

4.2 Астрофизический S - фактор

Ранее в работе [96] на основе потенциальной кластерной модели выполнялись расчеты полных сечений и астрофизического *S* - фактора процесса радиационного $p^{3}H$ захвата и считалось, что основной вклад в сечения *E*1 фоторазвала ядра ⁴He в $p^{3}H$ канал или радиационного $p^{3}H$ захвата дают переходы с изменением изоспина $\Delta T = 1$ [111]. Поэтому в расчетах нужно использовать ${}^{1}P_{1}$ - потенциал для p^{3} He рассеяния в чистом по изоспину (T = 1) синглетном состоянии этой системы и ${}^{1}S$ - потенциал для основного чистого по изоспину с T = 0 связанного состояния ядра ⁴He в p^{3} H канале [96].

Используя эти представления, были заново выполнены расчеты E1 перехода с уточненным потенциалом основного состояния ⁴He (см. табл.4.2) [112]. Результаты этих расчетов астрофизического S - фактора при энергиях до 1 кэВ приведены на рис.4.4а и рис.4.4б непрерывной линией. При энергиях до 10 кэВ полученные результаты практически не отличаются от наших прежних результатов, приведенных в работе [96].

Новые экспериментальные данные взяты из работ [107,108] и, кроме того, дополнительно использованы неизвестные нам ранее данные из работы [113]. Из рисунков видно, что расчеты, сделанные нами около 15 лет назад, хорошо воспроизводят новые данные по S - фактору, полученные в работе [107] при энергиях от 50 кэВ до 5 МэВ (с.ц.м.).

Эти данные имеют заметно меньшую неоднозначность при энергиях выше 1 МэВ по сравнению с прежними результатами работ [106,114,115,116], и более точно определяют общее поведение S - фактора при низких энергиях, практиче-

ски совпадая с ранними данными [113] в области 80 ÷ 600 кэВ.

Рис.4.4а. Астрофизический S - фактор радиационного $p^{3}H$ захвата в области 1 кэB ÷ 1 МэВ.

Линия – расчет с приведенным в тексте потенциалом. Точки – пересчет полных сечений захвата из [107], приведенных в работе [108], верхние открытые треугольники – [113], ромбы – [108], нижний открытый треугольник – [106].

Рис.4.4б. Астрофизический S - фактор радиационного р³Н захвата в области 1 \div 10 МэВ.

Линия – расчет с приведенным в тексте потенциалом. Точки – пересчет полных сечений захвата из [107], приведенных в работе [108], верхний открытый треугольник – [113], кружки – [114], открытые квадраты – [115], крестики (×) – [116], нижние открытые треугольники – [106]. Энергии выше 1 ÷ 2 МэВ исследовалась во многих работах, поэтому для сравнения на рис.4.46 мы приводим эти результаты, которые показывают большую неоднозначность экспериментальных измерений, выполненных в разное время и в различных работах: [114] – кружки, [115] – открытые квадраты, [116] – крестики (×), [106] – нижние открытые треугольники.

При энергии 1 кэВ величина S - фактора оказалась равна 0.96 эВ·б, а результаты расчета при энергиях меньше 50 кэВ лежат несколько ниже новых данных работы [108], где для S(0) получено 2.0(2) эВ·б. Заметим, что простая экстраполяция имеющихся экспериментальных данных по трем последним точкам работ [107,113] к 1 кэВ приводит к его значению примерно 0.6(3) эВ·б, т.е. в три раза меньше величины, полученной в [108]. Данные работы [108] содержать сравнительно в дальнейшем.

Из рис.4.4а видно, что S - фактор при самых низких энергиях, примерно в области 1 ÷ 3 кэВ, почти не зависит от энергии. Это дает основание предположить, что его величина при нулевой энергии практически не отличается от значения при 1 кэВ. Поэтому различие S - фактора при 0 и 1 кэВ, повидимому, составит не более 0.05 эВ·б и эту величину можно считать ошибкой определения расчетного S - фактора при нулевой энергии.

4.3 Вычисление астрофизического S - фактора

Приведем текст компьютерной программы для вычисления астрофизического S - фактора, сечений радиационного захвата и фоторазвала ядра ⁴Не в р³Н канал и энергии связи в двухчастичной системе. Программа основана на конечно разностном методе, подробно описанном в [24]. Здесь лишь кратко приведем конечно - разностные методы поиска энергии связи и ВФ для связанных состояний и процессов рассеяния. Уравнение Шредингера [40] для центральных потенциалов

 $u''_{\rm L}$ + [$k^2 - V(\mathbf{r})$] $u_{\rm L} = 0$

с тем или иным граничным условием при $k^2 < 0$ образует краевую задачу типа Штурма - Лиувилля и при переходе второй производной к конечным разностям [21,22,23]

$$u'' = [u_{n+1} - 2u_n + u_{n-1}]/h^2$$

превращается в замкнутую систему линейных алгебраических уравнений. Условие равенства нулю ее детерминанта $D_{\rm N}$, достигаемое при некотором k_0

$$D_{N} = \begin{pmatrix} \theta_{1} & 1 & 0 & . & . & . & 0 \\ \alpha_{2} & \theta_{2} & 1 & 0 & . & . & 0 \\ 0 & \alpha_{3} & \theta_{3} & 1 & 0 & . & 0 \\ . & . & . & . & . & . \\ 0 & . & 0 & 0 & \alpha_{N-1} & \theta_{N-1} & 1 \\ 0 & . & 0 & 0 & 0 & \alpha_{N} & \theta_{N} \end{pmatrix} = 0 ,$$

позволяет определить энергию связи системы двух частиц k_0 .

Здесь N – число уравнений, $h = \Delta r/N$ – шаг конечно разностной сетки, Δr – интервал решения системы, и

$$\begin{aligned} \alpha_{n} &= 1 , & \alpha_{N} &= 2 , & \theta_{n} &= k^{2}h^{2} - 2 - V_{n}h^{2} , \\ \theta_{N} &= k^{2}h^{2} - 2 - V_{n}h^{2} + 2hf(\eta, L, Z_{n}) , & Z_{n} &= 2kr_{n} , \\ r_{n} &= nh , & n &= 1, 2 \dots N , & k &= \sqrt{|k^{2}|} , \\ f(\eta, L, Z_{n}) &= -k - 2k\eta/Z_{n} - 2k(L - \eta)/Z_{n}^{2} , \end{aligned}$$

где $V_n = V(r_n)$ – потенциал взаимодействия кластеров в точке r_n .

Такая форма записи граничных условий $f(\eta, L, Z_n)$ позволяет приближенно учитывать кулоновское взаимодействие, т.е. эффекты, которые дает учет в асимптотике ВФ функции Уиттекера (см. Приложение 3).

Вид логарифмической производной ВФ во внешней области можно получить из интегрального представления функции Уиттекера [51]

$$f(\eta, L, Z) = -k - \frac{2k\eta}{Z} - \frac{2k(L-\eta)}{Z^2}S \quad , \qquad \qquad \backslash$$

где

$$S = \frac{\int_{0}^{\infty} t^{L+\eta+1} (1+t/z)^{L-\eta-1} e^{-t} dt}{\int_{0}^{\infty} t^{L+\eta} (1+t/z)^{L-\eta} e^{-t} dt}$$

Расчеты показывают, что величина *S* не превышает 1.05, и ее влияние на энергию связи двухчастичной системы пренебрежимо мало.

Вычисление $D_{\rm N}$ проводится по рекуррентным формулам вида

 $D_{-1} = 0$, $D_0 = 1$,

 $D_{\rm n} = \theta_{\rm n} D_{\rm n-1} - \alpha_{\rm n} D_{\rm n-2} ,$

 $n=1\,\ldots\,N~.$

Для нахождения формы волновых функций связанных состояний используется другой рекуррентный процесс

 $u_0 = 0$, $u_1 = \text{const}$,

 $u_{n} = \theta_{n-1}u_{n-1} + \alpha_{n-1}u_{n-2}$,

 $n=2\ldots N$,

где const – произвольное число, обычно задаваемое в области $0.001 \div 0.1$.

Тем самым, при заданной энергии системы удается найти детерминант и волновую функцию связанного состояния. Энергия, приводящая к нулю детерминанта

 $D_{\rm N}(k_0) = 0$

считается собственной энергией системы, а волновая функция при этой энергии – собственной функцией задачи.

Последнее рекуррентное соотношение используется и для поиска ВФ в случае непрерывного спектра собственных значений, т.е. при заранее заданной энергии ($k^2 > 0$) рассеяния частиц [24].

Приведем далее текст самой компьютерной программы, написанной на языке Fortran - 90. Пояснения параметров, задаваемых величин, например, потенциалов и наименование вычислительных блоков приведены непосредственно в тексте программы.

PROGRAM p3T_S

! ПРОГРАММА ВЫЧИСЛЕНИЯ АСТРОФИЗИЧЕСКОГО S-!ФАКТОРА Р³Н ЗАХВАТА USE MSIMSL IMPLICIT REAL(8) (A-Z) INTEGER III,L,N,N3,I,NN,NV,NH,L1,L2,N1,N2,IFUN,N5, MINI, IFAZ DIMENSION EEE(0:1000) COMMON /M/ V(0:10240000),U1(0:10240000),U(0:10240000) COMMON /AA/ SKS,L,GK,R,SSS,AKK,CC COMMON /AA/ SKS,L,GK,R,SSS,AKK,CC COMMON /CC/ HK,IFUN,MINI,IFAZ COMMON /DD/ SS,AAK,GAM

```
!****** ПАРАМЕТРЫ РАСЧЕТОВ **********
WFUN=0
RAD=1
FOTO=1
IFUN=0: ! Если = 0 тогла KRM, если = 1 тогла RK
IFAZ=1:! Если = 0 фаза просто = 0, если = 1 - фаза вычисля-
ется
MINI=0; ! Если = 0 фаза считается на границе области, если =
1 проводится поиск фазы по заданной точности
IF (IFAZ==0)THEN
MINI=0
PRINT *.'ASSIMPTOTIC AT R ONLY !'
END IF
! ********* МАССЫ И ЗАРЯДЫ
                                 *******
Z1=1.0D-000
Z2=1.0D-000
Z = Z1 + Z2
AM1=1.00727646677D-000; ! MACCA P
AM2=3.0155007134D-000: ! MACCA T
AM=AM1+AM2
RK11=0.877D-000: ! P
RM11=0.877D-000; ! P
RK22=1.63D-000; ! T
RM22=1.72D-000: ! T
PI=4.0D-000*DATAN(1.0D-000)
PM=AM1*AM2/AM
A1=41.4686D-000
B1=2.0D-000*PM/A1
AK1=1.439975D-000*Z1*Z2*B1
GK=3.44476D-002*Z1*Z2*PM
! ********* ПАРАМЕТРЫ РАСЧЕТОВ
                                        *******
N=1000; N3=N
RR=30.0D-000 ! Расстояние в Фм для определения ВФ
H=RR/N; H1=H; HK=H*H
SKN=-22.0D-000; HC=0.1D-000; SKV=1.0D-000
SKN=SKN*B1: SKV=SKV*B1: HC=HC*B1
NN=0; NH=1
NV=100 ! Число шагов по энергии при вычислении S - фак-
```

тора

```
EH=1.0D-003 ! Шаг по энергии при вычислении S - фактора
EN=1.0D-003 ! Начальная энергия при вычислении S - фак-
тора
EP=1.0D-015; ! Абсолютная точность поиска нуля
детерминанта и кулоновских функций
EP1=1.D-008; ! Абсолютная точность поиска энергии связи
EP2=1.0D-003: ! Точность поиска асимптотической
константы в относительных елиницах
EP3=1.0D-003; ! Точность поиска фаз рассеяния в
относительный елиницах
! ***************** ПОТЕНЦИАЛЫ ****************
V0=62.906841138D-000; ! P3H FOR RCU=0. R=1.73 C=4.51(1)
R0=0.17D-000
V1=0.0D-000
R1=1.0D-000
L=0
A2=-V0*B1
A33=V1*B1
VP=15.0D-000
RP=0.1D-000
L1=1
VD=V0
RD=R0
L_{2=2}
AP=-VP*B1
AD=-VD*B1
RCU=0.0D-000
!******* ПОИСК МИНИМУМА *********
III=1
CALL
MIN(EP,B1,SKN,SKV,HC,H,N,L,A2,R0,AK1,RCU,GK,ESS,SK
S.A33.R1)
PRINT *.'
                E
                                    DEL-E'
                          Ν
EEE(III)=ESS
111 N=2*N
H=H/2.0D-000
III=III+1
```

CALL MIN(EP,B1,SKN,SKV,HC,H,N,L,A2,R0,AK1,RCU,GK,ESS1,S KS.A33.R1) EEE(III)=ESS1 EEPP=ABS(EEE(III))-ABS(EEE(III-1)) PRINT *. EEE(III), N. EEPP IF (ABS(EEPP)>EP1) GOTO 111 ESS=ESS1 PRINT *. EEE(III). N. EEPP 12 FORMAT(1X,E19.12,2X,I10,2X,3(E10.3,2X)) OPEN (25.FILE='E.DAT') WRITE(25,*) ESS.SKS.N.H CLOSE(25) SK=SKS SSS=DSORT(ABS(SKS)) SS=SSS AKK=GK/SSS AAK=AKK HK=H*H ZZ=1.0D-000+AAK+L GAM=DGAMMA(ZZ) **333 CONTINUE** IF (IFUN==0) THEN N1 = N/4ELSE N1=N/8END IF N1=NIF (IFUN==0) THEN CALL FUN(U,H,N1,A2,R0,A33,R1,L,RCU,AK1,SK) ELSE CALL FUNRK(U,N1,H,L,SK,A2,R0) END IF ! * * * * * * * * * * HOPMUPOBKA BФ * * * * * * * * * * * * * N2=1N5=N1N1 = 1

```
CALL ASSIM(U.H.N5.C0.CW0.CW.N1.EP2)
DO I=0.N1
V(I)=U(I)*U(I)
ENDDO
CALL SIMP(V,H,N1,SII)
HN=1.0D-000/DSORT(SII)
OPEN (24,FILE='FUN-WWW.DAT')
DO I=0.N1
X=I*H
U(I)=U(I)*HN
ENDDO
CLOSE(24)
! * * * * АСИМПТОТИЧЕСКИЕ КОНСТАНТЫ * * * * * *
CALL ASSIM(U,H,N1,C0,CW0,CW,N1,EP2)
1 FORMAT(1X,4(E13.6,2X))
! ***** ПЕРЕНОРМИРОВКА ХВОСТА ВФ ******
SQQ=DSQRT(2.0D-000*SS)
DO I=N1+1,N,N2
R=I*H
CC=2.0D-000*R*SS
CALL WHI(R.WWW)
U(I)=CW*WWW*SOO
ENDDO
1122 CONTINUE
| * * * * * * *
             ПОВТОРНАЯ НОРМИРОВКА ВФ ****
DO I=1.N1
V(I)=U(I)*U(I)
ENDDO
DO I=N1+1,N,N2
V(I)=U(I)*U(I)
ENDDO
CALL SIMP(V,H,N,SIM)
HN=SIM
HN=1.0D-000/DSQRT(HN)
DO I=1.N
U(I)=U(I)*HN
ENDDO
DO I=N1+1,N,N2
```

```
U(I)=U(I)*HN
ENDDO
! * * * АСИМПТОТИЧЕСКИЕ КОНСТАНТЫ * * * * * * *
CALL ASSIM(U.H.N.CO.CW0.CW.N.EP2)
IF (WFUN==0) GOTO 2233
OPEN (24, FILE='FUN.DAT')
WRITE(24.*) '
             R
                     U'
PRINT *.' R
             U'
DO I=0.N
X=H*I
PRINT 2.X.U(I)
WRITE(24,2) X,U(I)
ENDDO
CLOSE(24)
2233 CONTINUE
666 IF (RAD==0) GOTO 7733
OPEN (23.FILE='RAD.DAT')
WRITE(23,*)' E
                SQRT(RM**2) SQRT(RZ**2)'
DO I=0.N
X=I*H
V(I) = X^*X^*U(I)^*U(I)
ENDDO
CALL SIMP(V.H.N.RKV)
RM=AM1/AM*RM11**2
                    + AM2/AM*RM22**2
                                          +
((AM1*AM2)/AM**2)*RKV
RZ=Z1/Z*RK11**2
                          Z2/Z*RK22**2
                   +
                                          +
(((Z1*AM2**2+Z2*AM1**2)/AM**2)/Z)*RKV
PRINT *, (RM^2)^{1/2} = , DSORT(RM)
PRINT *, (RZ^2)^{1/2} = , DSORT(RZ)
PRINT *, (RKV^2)^{1/2} = , DSQRT(RKV)
WRITE(23,2) DSORT(RM), DSORT(RZ)
2 FORMAT(1X,2(E16.8,2X))
CLOSE(23)
7733 CONTINUE
PRINT *, 'CALCULATE CROSS SECTION ?'
```

READ* IF (FOTO==0) GOTO 9988 CALL SFAC(EN.EH.NN.NV.NH.B1.ESS.H.N.L1.L2.RCU.AD.AK1.A P.PI.Z1.Z2.AM1.AM2.PM.RD.RP.GK.EP.EP3.N2) 9988 CONTINUE END SUBROUTINE ASSIM(U,H,N,C0,CW0,CW,I,EP) ! Подпрограмма вычисления асимптотической константы IMPLICIT REAL(8) (A-Z) INTEGER I.L.N.J.N2 DIMENSION U(0:10240000) COMMON /AA/ SKS,L,GK,R,SS,GGG,CC N2 = 10OPEN (22, FILE='ASIMP.DAT') WRITE(22,*) ' R C0CW0 CW' SQQ=DSQRT(2.0D-000*SS)PRINT *,' CW0 CW' R **C**0 IF (I==N) THEN DO J=N/16,N,N/16 R=J*H CC=2.0D-000*R*SS C0=U(J)/DEXP(-SS*R)/SOO CW0=C0*CC**GGG CALL WHI(R,WWW) CW=U(J)/WWW/SOO PRINT 1.R.CO.CW0.CW.I WRITE(22,1) R,C0,CW0,CW **ENDDO** ELSE I=N R=I*H CC=2.0D-000*R*SS CALL WHI(R.WWW) CW1=U(I)/WWW/SOO 12 I=I-N2 IF (I<=0) THEN

```
PRINT *.'NO STABLE ASSIMPTOTIC FW'
STOP
END IF
R=I*H
CC=2.0D-000*R*SS
CALL WHI(R.WWW)
CW=U(I)/WWW/SOO
IF (ABS(CW1-CW)/ABS(CW)>EP .OR. CW==0.0D-000)
THEN
CW1=CW
GOTO 12
END IF
PRINT *.'
          R
                   C0
                          CW0
                                    CW'
PRINT 1.R.CO.CW0.CW.I
WRITE(22,1) R,C0,CW0,CW
END IF
CLOSE(22)
1 FORMAT(1X,4(E13.6,2X),3X,I8)
END
FUNCTION F(X)
! Подпрограмма вычисления подынтегральных значений
функции для функции Уиттекера
IMPLICIT REAL(8) (A-Z)
INTEGER L
COMMON /AA/ SKS.L.GK.R.SS.AA.CC
F=X**(AA+L)*(1.0D-000+X/CC)**(L-AA)*DEXP(-X)
END
SUBROUTINE WHI(R,WH)
! Подпрограмма вычисления функции Уиттекера
USE MSIMSL
IMPLICIT REAL(8) (A-Z)
REAL(8) F
EXTERNAL F
COMMON /DD/ SS,AAK,GAM
CC=2.0D-000*R*SS
Z=CC**AAK
CALL DODAG (F.0.0D-000.25.0D-000.0.0010D-000.0.0010D-
000,1,RES,ER)
```

Дубовиченко С.Б. Термоядерные процессы Вселенной

WH=RES*DEXP(-CC/2.0D-000)/(Z*GAM) END SUBROUTINE MIN(EP,B1,PN,PV,HC,HH,N3,L,A22,R0,AK1,RCU,GK,EN, COR.A33.R1) ! Полпрограмма вычисления значений энергии связи IMPLICIT REAL(8) (A-Z) INTEGER I.N3.L.LL HK=HH**2: LL=L*(L+1) IF(PN>PV) THEN PNN=PV: PV=PN: PN=PNN **ENDIF** A=PN: H=HC **1 CONTINUE** CALL DET(A,GK,N3,A22,R0,L,LL,AK1,RCU,HH,HK,D1,A33,R1) B = A + H**2 CONTINUE** CALL DET(B.GK.N3,A22,R0,L,LL,AK1,RCU,HH,HK,D2,A33,R1) IF (D1*D2>0.0D-000) THEN B=B+H: D1=D2 IF (B<=PV .AND. B>=PN) GOTO 2 I=0; RETURN; ELSE A=B-H: H=H*1.0D-001 IF(ABS(D2)<EP .OR. ABS(H)<EP) GOTO 3 B=A+H: GOTO 1**ENDIF** 3 I=1; COR=B; D=D2; EN=COR/B1; END SUBROUTINE DET(DK,GK,N,A2,R0,L,LL,AK,RCU,H,HK,DD,A3,R1) ! Подпрограмма вычисления величины детерминанта IMPLICIT REAL(8) (A-Z) INTEGER(4) L,N,II,LL S1=DSQRT(ABS(DK)) G2=GK/S1D1=0.0D-000

```
D=1 0D-000
DO II=1.N
X=II*H
XX=X*X
F=A2*DEXP(-XX*R0)+A3*DEXP(-XX*R1)+LL/XX
IF (X>RCU) GOTO 67
F=F+(AK/(2.0D-000*RCU))*(3.0D-000-(X/RCU)**2)
GOTO 66
67 \text{ F=F+AK/X}
66 IF (II==N) GOTO 111
D2=D1
D1=D
OM=DK*HK-F*HK-2.0D-000
D=OM*D1-D2
ENDDO
111 Z=2.0D-000*X*S1
OM=DK*HK-F*HK-2.0D-000
W=-S1-2.0D-000*S1*G2/Z-2.0D-000*S1*(L-G2)/(Z*Z)
OM=OM+2.0D-000*H*W
DD=OM*D-2.0D-000*D1
END
SUBROUTINE FUN(U,H,N,A2,R0,A3,R1,L,RCU,AK,SK)
! Подпрограмма вычисления значений потенциалов
IMPLICIT REAL(8) (A-Z)
DIMENSION U(0:10240000)
INTEGER N,L,K,IFUN,MIN,IFAZ
COMMON /CC/ HK, IFUN, MIN, IFAZ
U(0)=0.0D-000
U(1)=0.1D-000
DO K=1.N-1
X=K*H
XX=X*X
O1=A2*DEXP(-R0*XX)+A3*DEXP(-R1*XX)+L*(L+1)/XX
IF (X>RCU) GOTO 1571
Q1=Q1+(3.0D-000-(X/RCU)**2)*AK/(2.0D-000*RCU)
GOTO 1581
1571 O1=O1+AK/X
1581 O2=-O1*HK-2.0D-000+SK*HK
```

```
U(K+1)=-O2*U(K)-U(K-1)
ENDDO
END
SUBROUTINE SIMP(V,H,N,S)
! Подпрограмма вычисления интеграла методом Симпсона
IMPLICIT REAL(8) (A-Z)
DIMENSION V(0:10240000)
INTEGER N,II,JJ
A=0.0D-000; B=0.0D-000
A111: DO II=1,N-1,2
B=B+V(II)
ENDDO A111
B111: DO JJ=2.N-2.2
A = A + V(JJ)
END DO B111
S=H^{*}(V(0)+V(N)+2.0D-000^{*}A+4.0D-000^{*}B)/3.0D-000
END
SUBROUTINE CULFUN(LM,R,O,F,G,W,EP)
! Подпрограмма вычисления кулоновских функций
IMPLICIT REAL(8) (A-Z)
INTEGER L,K,LL,LM
EP=1.0D-020
L=0
F0=1.0D-000
GK=O*O
GR=O*R
RK=R*R
B01=(L+1)/R+Q/(L+1)
K=1
BK = (2*L+3)*((L+1)*(L+2)+GR)
AK = -R^{(L+1)**2+GK)/(L+1)*(L+2)}
DK=1.0D-000/BK
DEHK=AK*DK
S=B01+DEHK
15 \text{ K}=\text{K}+1
AK = -RK^{*}((L+K)^{**2-1})^{*}((L+K)^{**2}+GK)
BK = (2*L+2*K+1)*((L+K)*(L+K+1)+GR)
DK=1.D-000/(DK*AK+BK)
```

```
IF (DK>0.0D-000) GOTO 35
25 \text{ F0}=-\text{F0}
35 DEHK=(BK*DK-1.0D-000)*DEHK
S=S+DEHK
IF (ABS(DEHK)>EP) GOTO 15
FL=S
K=1
RMG=R-O
LL=L*(L+1)
CK=-GK-LL
DK=O
GKK=2.0D-000*RMG
HK=2.0D-000
AA1=GKK*GKK+HK*HK
PBK=GKK/AA1
RBK=-HK/AA1
AOMEK=CK*PBK-DK*RBK
EPSK=CK*RBK+DK*PBK
PB=RMG+AOMEK
OB=EPSK
52 K=K+1
CK=-GK-LL+K*(K-1)
DK=O*(2*K-1)
HK=2.0D-000*K
FI=CK*PBK-DK*RBK+GKK
PSI=PBK*DK+RBK*CK+HK
AA2=FI*FI+PSI*PSI
PBK=FI/AA2
RBK=-PSI/AA2
VK=GKK*PBK-HK*RBK
WK=GKK*RBK+HK*PBK
OM=AOMEK
EPK=EPSK
AOMEK=VK*OM-WK*EPK-OM
EPSK=VK*EPK+WK*OM-EPK
PB=PB+AOMEK
OB=OB+EPSK
IF ((ABS(AOMEK)+ABS(EPSK))>EP) GOTO 52
```

PL=-OB/ROL=PB/R G0=(FL-PL)*F0/OLG0P=(PL*(FL-PL)/OL-OL)*F0F0P=FL*F0 ALFA=1.0D-000/DSORT(ABS(F0P*G0-F0*G0P)) G=ALFA*G0 GP=ALFA*G0P F=ALFA*F0 FP=ALFA*F0P W=1.0D-000-FP*G+F*GP IF (LM==0) GOTO 123 AA=DSORT(1.0D-000+O**2)BB=1.0D-000/R+O F1=(BB*F-FP)/AA G1=(BB*G-GP)/AAWW1=F*G1-F1*G-1.0D-000/DSORT(O**2+1.0D-000) IF (LM==1) GOTO 234 DO L=1.LM-1 AA=DSORT((L+1)**2+O**2)BB=(L+1)**2/R+QCC = (2*L+1)*(O+L*(L+1)/R)DD=(L+1)*DSORT(L**2+O**2)F2=(CC*F1-DD*F)/L/AA G2=(CC*G1-DD*G)/L/AAWW2=F1*G2-F2*G1-(L+1)/DSQRT(Q**2+(L+1)**2)F=F1: G=G1: F1=F2: G1=G2 **ENDDO** 234 F=F1; G=G1 123 END SUBROUTINE SFAC(EN,EH,NN,NV,NH,B1,ES,H,N4,L1,L2,RCU,AD,AK1, AP,PI,Z1,Z2,AM1,AM2,PM,RD,RP,GK,EP,EP2,N2) ! Подпрограмма вычисления астрофизического S-фактора ! и сечений развала захвата IMPLICIT REAL(8) (A-Z) INTEGER(4) L1,L2,N3,NN,NV,NH,II,KK,ID,IP,N2,N4,IFUN,MIN,I,IFAZ

```
COMMON /M/ V(0:10240000).U1(0:10240000).U(0:10240000)
DIMENSION
                    FA1(0:1000),EG(0:1000),ECM(0:1000),
FA2(0:1000).
                    SZ2(0:1000).SR2(0:1000).SZ1(0:1000).
SR1(0:1000).SR(0:1000).SZ(0:1000).EL(0:1000).SF(0:1000)
COMMON /CC/ HK.IFUN.MIN.IFAZ
! ВЫЧИСЛЕНИЕ ФУНКЦИЙ РАССЕЯНИЯ ФАЗ
! И МАТРИЧНЫХ ЭЛЕМЕНТОВ S-ФАКТОРОВ
N3=N4: N2=4
A33=0.0D-000
R1=0.0D-000
OPEN (1.FILE='SFAC.DAT')
WRITE (1.*) '
                 ECM(I)
                                EG(I)
                                               SR1(I)
SR2(I)
                       SZ1(I)
                                   SZ2(I)
                                                SZ(I)
           SR(I)
           F'
SF(I)
PRINT *. '
              EG
                         ECM
                                      SR1
                                                 SR<sub>2</sub>
                                       F'
SR
        SZ1
                SZ2
                        SZ
                                SF
A1: DO I=NN.NV.NH
ECM(I)=EN+I*EH
EG(I)=ECM(I)+ABS(ES)
SK=ECM(I)*B1
SS1=SK**0.5
G=GK/SS1
                                        D-ФУНКЦИЙ
    вычисление
                     КУЛОНОВСКИХ
X1=H*SS1*(N3-4)
X2=H*SS1*(N3)
CALL CULFUN(L2,X1,G,F11,G11,W0,EP)
CALL CULFUN(L2,X2,G,F22,G22,W0,EP)
| * * *
       ВЫЧИСЛЕНИЕ D ФУНКЦИЙ РАССЕЯНИЯ * * * *
IF (IFUN==0) THEN
CALL FUN(U1,H,N3,AD,RD,A33,R1,L2,RCU,AK1,SK)
ELSE
CALL FUNRK(U1,N3,H,L2,SK,AD,RD)
END IF
| *********
             ВЫЧИСЛЕНИЕ D ФАЗ ***********
F1=F11
G1=G11
F2=F22
G2 = G22
```

```
CALL FAZ(N3.F1.F2.G1.G2.U1.FA1.LXH2)
IF (MIN==0) GOTO 543
IF ((FA1(I) == 0.D-000)) GOTO 543
II=N3
135 II=II-N2
IF (II<=4) THEN
PRINT *, 'NO DEFINITION D-FAZA'
GOTO 555
END IF
X1=H*SS1*(II-4)
X2=H*SS1*(II)
CALL CULFUN(L2,X1,G,F11,G11,W0,EP)
CALL CULFUN(L2,X2,G,F22,G22,W0,EP)
F1=F11
G1=G11
F2=F22
G2=G22
CALL FAZ(II,F1,F2,G1,G2,U1,FA2,I,XH2)
IF (ABS (FA1(I) - FA2(I)) > ABS(EP2*FA2(I))) THEN
FA1(I)=FA2(I)
GOTO 135
END IF
ID=II
DO J=ID.N4
X=H*SS1*J
CALL CULFUN(L2,X,G,F1,G1,W0,EP)
U1(J)=(DCOS(FA2(I))*F1+DSIN(FA2(I))*G1)
ENDDO
! ** ВЫЧИСЛЕНИЕ МАТРИЧНЫХ ЭЛЕМЕНТОВ Е2 *****
543 CONTINUE
D1: DO J=0,N4
X=H*J
V(J)=U1(J)*X*X*U(J)
ENDDO D1
CALL SIMP(V.H.N4.AID1)
AID=AID1
! * * * * ВЫЧИСЛЕНИЕ ФУНКЦИЙ Р-РАССЕЯНИЯ * * * *
555 IF (IFUN==0) THEN
```

Дубовиченко С.Б. Термоядерные процессы Вселенной

```
CALL FUN(U1.H.N3.AP.RP.A33.R1.L1.RCU.AK1.SK)
ELSE.
CALL FUNRK(U1.N3.H.L1.SK.AP.RP)
END IF
! **** ВЫЧИСЛЕНИЕ КУЛОНОВСКИХ Р-ФУНКЦИЙ
                                             ***
X1=H*SS1*(N3-4)
X2=H*SS1*(N3)
CALL CULFUN(L1,X1,G,F11,G11,W0,EP)
CALL CULFUN(L1,X2,G,F22,G22,W0,EP)
F1=F11
G1=G11
F2=F22
G2 = G22
CALL FAZ(N3,F1,F2,G1,G2,U1,FA1,I,XH2)
IF (MIN==0) GOTO 545
IF ((FA1(I) = 0.D-000)) GOTO 545
KK=N3
134 KK=KK-N2
IF (KK<=4) THEN
PRINT *, 'NO DEFINITION P-FAZA'
GOTO 1122
END IF
X1=H*SS1*(KK-4)
X2=H*SS1*(KK)
CALL CULFUN(L1,X1,G,F11,G11,W0,EP)
CALL CULFUN(L1,X2,G,F22,G22,W0,EP)
F1=F11
G1=G11
F2=F22
G2 = G22
CALL FAZ(KK,F1,F2,G1,G2,U1,FA2,I,XH)
IF (ABS (FA1(I) - FA2(I)) > ABS(EP2*FA2(I)) ) THEN
FA1(I)=FA2(I)
GOTO 134
END IF
IP=KK
DO J=IP.N4
```

```
X=H*SS1*I
CALL CULFUN(L2,X,G,F1,G1,W0,EP)
U1(J)=(DCOS(FA2(I))*F2+DSIN(FA2(I))*G2)
ENDDO
! *** ВЫЧИСЛЕНИЕ Е1 МАТРИЧНЫХ ЭЛЕМЕНТОВ
                                                 ****
545 CONTINUE
CC1:DO J=0.N4
X=H*J
V(J)=U1(J)*X*U(J)
ENDDO CC1
CALL SIMP(V.H.N4.BIP)
AIP=BIP
! ****** ВЫЧИСЛЕНИЕ СЕЧЕНИЙ ******************
AMEP=3.0D-000*AIP**2
AMED=5 0D-000*AID**2
AKP=SS1
AKG=(EG(I))/197.331D-000
BBBB=344.46D-000*8.0D-000*PI*3.0D-000/2.0D-000/9.0D-
000/25.0D-000/2.0D-000/2.0D-
000*PM**5*(Z1/AM1**2+Z2/AM2**2)**2
SZ2(I)=BBBB*(AKG/AKP)**5*AMED*AKP**2
SR2(I)=SZ2(I)*2.0D-000*2.0D-000/2.0D-000*(AKP/AKG)**2
BBB=344.46D-000*8.0D-000*PI*2.0D-000/9.0D-000/2.0D-
000/2.0D-000*PM**3*(Z1/AM1-Z2/AM2)**2
SZ1(I)=BBB*(AKG/AKP)**3.*AMEP
SR1(I)=SZ1(I)*2.0D-000*2.0D-000/2.0D-000*(AKP/AKG)**2
SR(I)=SR1(I)+SR2(I)
SZ(I)=SZ1(I)+SZ2(I)
EL(I)=ECM(I)*AM1/PM
SSS=DEXP(Z1*Z2*31.335D-
000*DSORT(PM)/DSORT(ECM(I)*1.0D+003))
SF(I)=SZ(I)*1.0D-006*ECM(I)*1.0D+003*SSS
PRINT
                                                    2,
ECM(I),EG(I),SR1(I),SR2(I),SR(I),SZ1(I),SZ2(I),SZ(I),SF(I),FA
1(I)*180./PI
WRITE
                                                  (1.2)
ECM(I),EG(I),SR1(I),SR2(I),SR(I),SZ1(I),SZ2(I),SZ(I),SF(I),FA
1(I)*180./PI
```

1122 ENDDO A1 CLOSE(1) 2 FORMAT(1X.11(E13.6.1X)) END SUBROUTINE FAZ(N,F1,F2,G1,G2,V,F,I,H2) ! ПОЛПРОГРАММА ВЫЧИСЛЕНИЯ ФАЗ РАССЕЯНИЯ IMPLICIT REAL(8) (A-Z) INTEGER I.J.N.MIN.IFUN,IFAZ DIMENSION V(0:10240000), F(0:1000) COMMON /CC/ HK, IFUN, MIN, IFAZ U1 = V(N-4)U2=V(N)IF (IFAZ==0) THEN FA=0.0D-000 ELSE AF = -(F1*(1-(F2/F1)*(U1/U2)))/(G1*(1-(G2/G1)*(U1/U2)))FA=DATAN(AF) END IF IF (FA<1.0D-008) THEN FA=0.0D-000 **ENDIF** H2=(DCOS(FA)*F2+DSIN(FA)*G2)/U2 F(I)=FA DO J=0.N V(J)=V(J)*H2**ENDDO** END SUBROUTINE FUNRK(V.N.H.L.SK,A22,R00) ! ***** РЕШЕНИЕ УРАВНЕНИЯ ШРЕДИНГЕРА ! МЕТОДОМ РУНГЕ - КУТТА ВО ВСЕЙ ОБЛАСТИ ! ПЕРЕМЕННЫХ ***** IMPLICIT REAL(8) (A-Z) INTEGER I,N,L DIMENSION V(0:10240000) VA1=0.0D-000; ! VA1 - Значение функции в нуле РА1=1.0D-003 ! РА1 - Значение производной в нуле DO I=0,N-1 X=H*I+1.0D-015

```
CALL RRUN(VB1.PB1.VA1.PA1.H.X.L.SK.A22.R00)
VA1=VB1
PA1=PB1
V(I+1)=VA1
ENDDO
END
SUBROUTINE RRUN(VB1.PB1.VA1.PA1.H.X.L.SK.A.R)
! **** РЕШЕНИЕ УРАВНЕНИЯ ШРЕЛИНГЕРА МЕТОЛОМ
! РУНГЕ - КУТТА НА ОЛНОМ ШАГЕ *****
IMPLICIT REAL(8) (A-Z)
INTEGER L
X0=X
Y1=VA1
CALL FA(X0,Y1,FK1,L,SK,A,R)
FK1=FK1*H
FM1=H*PA1
X0=X+H/2.0D-000
Y2=VA1+FM1/2.0D-000
CALL FA(X0,Y2,FK2,L,SK,A,R)
FK2=FK2*H
FM2=H^{*}(PA1+FK1/2.0D-000)
Y3=VA1+FM2/2.0D-000
CALL FA(X0,Y3,FK3,L,SK,A,R)
FK3=FK3*H
FM3=H*(PA1+FK2/2.0D-000)
X0=X+H
Y4=VA1+FM3
CALL FA(X0,Y4,FK4,L,SK,A,R)
FK4=FK4*H
FM4=H*(PA1+FK3)
PB1=PA1+(FK1+2.0D-000*FK2+2.0D-000*FK3+FK4)/6.0D-
000
VB1=VA1+(FM1+2.0D-000*FM2+2.0D-000*FM3+FM4)/6.0D-
000
END
SUBROUTINE FA(X.Y.FF.L.SK.A.R)
! * ВЫЧИСЛЕНИЕ ФУНКЦИИ F(X,Y) В МЕТОДЕ РУНГЕ -
! КУТТА *
```

```
IMPLICIT REAL(8) (A-Z)
INTEGER L
COMMON /BB/ A2,R0,AK,RCU
VC=A*DEXP(-R*X*X)
IF (X>RCU) GOTO 1
VK=(3.0D-000-(X/RCU)**2)*AK/(2.0D-000*RCU)
GOTO 2
1 VK=AK/X
2 FF=-(SK-VK-VC-L*(L+1)/(X*X))*Y
END
```

Далее приведены результаты контрольного счета по этой программе. Первая распечатка показывает процесс сходимости энергии связи E для p^{3} Н системы с приведенным в табл.4.2 потенциалом СС в зависимости от текущей точности δE и задаваемого числа шагов N, которое обеспечивает такую точность.

E	N	δE
-19.814143936616980	2000	-1.001912862701460E-003
-19.813893481090760	4000	-2.504555262170527E-004
-19.813830868619080	8000	-6.261247168382056E-005
-19.813815215615060	16000	-1.565300401296099E-005
-19.813811302282760	32000	-3.913332307092787E-006
-19.813810324242950	64000	-9.780398002590118E-007
-19.813810079038370	128000	-2.452045890777299E-007
-19.813810018177860	256000	-6.086050419185085E-008
-19.813810005390660	512000	-1.278720418440571E-008
-19.813810000116750	1024000	-5.273907532910016E-009

Далее идет расчет асимптотической константы C_w (также как C_0 и C_{w0} [24]) в зависимости от межкластерного расстояния R и определяются область таких расстояний, на которых константа практически не меняется.

R	C_0	C_{w0}	C_w
.595547E+00	.553644E+00	.553842E+00	.564169E+00
.119109E+01	.143211E+01	.146335E+01	.147985E+01
.178664E+01	.240107E+01	.248411E+01	.250441E+01

Дубовиченко С.Б. Термоядерные процессы Вселенной

.238219E+01	.320668E+01	.334693E+01	.336846E+01
.297773E+01	.373762E+01	.392783E+01	.394870E+01
.357328E+01	.402419E+01	.425267E+01	.427192E+01
.416883E+01	.415189E+01	.440837E+01	.442577E+01
.476438E+01	.419640E+01	.447389E+01	.448954E+01
.535992E+01	.420445E+01	.449867E+01	.451280E+01
.595547E+01	.419907E+01	.450743E+01	.452029E+01
.655102E+01	.418981E+01	.451063E+01	.452241E+01
.714656E+01	.418003E+01	.451211E+01	.452298E+01
.774211E+01	.417082E+01	.451321E+01	.452330E+01
.833766E+01	.416264E+01	.451460E+01	.452401E+01
.893320E+01	.415628E+01	.451723E+01	.452605E+01
.952875E+01	.415383E+01	.452350E+01	.453180E+01

Выдача на экран заканчивается на расстоянии 9.5287 Фм, а это означает, что на следующем шаге, примерно при 10 Фм, разница констант составит *EP*2, т.е. найдена область стабилизации константы AK.

Следом приводятся результаты расчета зарядового $\langle R_z^2 \rangle^{1/2}$ и массового $\langle R_m^2 \rangle^{1/2}$ радиусов [24] ядра ⁴Не в р³Н канале в Фм.

$$\langle R_m^2 \rangle^{1/2} = 1.784$$
, $\langle R_z^2 \rangle^{1/2} = 1.731$

И, наконец, даны результаты расчетов астрофизического S - фактора в кэВ·б, так, как они приводятся в выходном файле при энергиях 1 ÷ 10 кэВ. Здесь показаны только результаты для сечений захвата *E*1 и *E*2 их сумма $S_Z(I)$ и полный S - фактор SF(I).

$E_{CM}(I)$	$S_{ZI}(I)$	$S_{Z2}(I)$	$S_Z(I)$	SF(I)
.100000E-02	.144176E-08	.471624E-14	.144177E-08	.963835E-03
.200000E-02	.211076E-05	.812620E-11	.211077E-05	.970699E-03
.300000E-02	.495617E-04	.219483E-09	.495619E-04	.998845E-03
.400000E-02	.316038E-03	.158231E-08	.316040E-03	.103361E-02
.500000E-02	.110298E-02	.615998E-08	.110298E-02	.107124E-02
.600000E-02	.275390E-02	.169655E-07	.275392E-02	.111092E-02
.700000E-02	.558004E-02	.375959E-07	.558008E-02	.115135E-02
.800000E-02	.982865E-02	.718952E-07	.982872E-02	.119232E-02
.900000E-02	.156780E-01	.123729E-06	.156781E-01	.123378E-02
-------------	-------------	-------------	-------------	-------------
.100000E-01	.232458E-01	.196850E-06	.232460E-01	.127578E-02

Отсюда видно, при энергии 1 кэВ (в распечатке энергия показана в МэВ) для S - фактора получается величина 0.964 10^{-3} кэВ·б или 0.964 эВ·б.

Данный вариант программы работает при значении параметра *MINI* = 0, который определяет режим поиска фазы рассеяния на границе области интегрирования, в данном случае это RR = 30 Фм. Если задать *MINI* = 1, то фаза при каждой энергии будет вычисляться, начиная с 30 Фм, в сторону меньших расстояний. В результате определяется область ее стабилизации при заданной точности *EP3* = 10^{-3} , которая обычно составляет $10 \div 20$ Фм.

Приведенные выше результаты получены при использовании конечно - разностного метода [24] для поиска ВФ рассеяния. Это достигается при значении, в начале программы, параметра *IFUN* = 0, а теперь приведем результат при *IFUN* = 1, когда для поиска этих ВФ используется метод Рунге - Кутта (PK) – здесь параметр *MINI* = 0.

$E_{CM}(I)$	$S_{ZI}(I)$	$S_{Z2}(I)$	$S_Z(I)$	SF(I)
.100000E-02	.144159E-08	.471344E-14	.144159E-08	.963717E-03
.200000E-02	.211039E-05	.812107E-11	.211040E-05	.970529E-03
.300000E-02	.495546E-04	.219350E-09	.495549E-04	.998703E-03
.400000E-02	.315976E-03	.158129E-08	.315978E-03	.103340E-02
.500000E-02	.110280E-02	.615615E-08	.110280E-02	.107107E-02
.600000E-02	.275358E-02	.169553E-07	.275360E-02	.111079E-02
.700000E-02	.557894E-02	.375720E-07	.557898E-02	.115113E-02
.800000E-02	.982720E-02	.718512E-07	.982728E-02	.119215E-02
.900000E-02	.156765E-01	.123657E-06	.156766E-01	.123366E-02
.100000E-01	.232417E-01	.196727E-06	.232419E-01	.127555E-02

Отсюда видно, что разница для S - фактора при 1 кэВ составляет величину примерно 10^{-4} эВ·б или 0.01%, которую можно рассматривать, как ошибку, которую вносит метод вычислений ВФ.

4.4 Программы фазового анализа в системе нетождественных частиц со спином 1/2+1/2

Приведем текст компьютерной программы для поиска фаз рассеяния в системе нетождественных частиц со спином 1/2 +1/2, например, р³Не. Данная программа учитывает спин орбитальное расщепление фаз рассеяния, но не учитывает триплет - синглетное смешивание, которое будет включено в следующей программе.

Использованные здесь выражения для дифференциальных сечений, на основе которых написаны программа, приведены в нашей работе [24] вместе с аналогичными программами на языке TurboBasic.

PROGRAM FAZOVIY_ANALIZ_p3He_WITH_LS IMPLICIT REAL(8) (A-Z) INTEGER I,L,Z1,Z2,LMI,LH,LMA,LN,LV,NV,NI,NPP,NT,NTT,NP DIMENSION ST(0:50),FT(0:50),XP(0:50) COMMON /A/ LH,LMI,NT,PI,NP,NPP COMMON /A/ LH,LMI,NT,PI,NP,NPP COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NTT COMMON /C/ SS,GG,LN,LV,POL(0:50),TT(0:50) COMMON /D/ FP(0:50),FPI(0:50),EP(0:50),F0(0:50),F0I(0:50), E0(0:50),M(0:50),FMI(0:50),EM(0:50),FS(0:50),FSI(0:50),

ES(0:50)

CHARACTER(9) BB CHARACTER(7) AA

CHARACTER(15) CC

AA='SEC.DAT'

BB='FAZLS.DAT'

PI=4.0D-000*DATAN(1.0D-000)

P1=PI

Z1=1 ! Заряд р

Z2=2 ! Заряд ЗНе

AM1=1.0D-000 ! Macca p

AM2=3.0D-000 ! Macca 3He

```
AM = AM1 + AM2
A1=41.46860D-000
PM=AM1*AM2/(AM1+AM2)
B1=2.0D-000*PM/A1
LMI=0 ! Начальный орбитальный момент
LH=1 ! Шаг по моменту
LMA=2 ! Максимальный момент
LN=LMI
LV=LMA
EPP=1.0D-005
NV=1 ! Если 1 то варьировать фазы, если 0 - без варьирова-
ния
FH=0.01D-000
NI=5 ! Число итераций
NPP=2*LMA
! ***** ECSPERIMENTAL CROSS SECTION 11.48 ******
NT=17 ! Число экспериментальных точек
NTT=NT
OPEN (1.FILE=AA)
DO L=1.NT
READ(1,*) TT(L), SE(L)
ENDDO
CLOSE(1)
OPEN (1.FILE=BB)
DO I=LN.LV
READ(1,*) FP(I),F0(I),FM(I),FS(I)
ENDDO
CLOSE(1)
DO L=LN,LV,LH
FM(L)=FM(L)*PI/180.0D-000
FP(L)=FP(L)*PI/180.0D-000
FO(L) = FO(L) * PI/180.0D-000
FMI(L) = FMI(L) * PI/180.0D-000
FPI(L)=FPI(L)*PI/180.0D-000
FOI(L) = FOI(L) * PI/180.0D-000
FT(L)=FT(L)*PI/180.0D-000
```

```
FS(L)=FS(L)*PI/180.0D-000
FSI(L)=FSI(L)*PI/180.0D-000
EP(L)=DEXP(-2.0D-000*FPI(L))
EM(L)=DEXP(-2.0D-000*FMI(L))
E0(L)=DEXP(-2.0D-000*F0I(L))
ES(L)=DEXP(-2.0D-000*FSI(L))
ENDDO
```

FH=FH*PI/180.0D-000 NP=2*NPP+1 DO I=LMI.LMA.LH XP(I)=FP(I)**ENDDO** DO I=LMI.LMA-1.LH XP(I+LMA+1)=FO(I+1)**ENDDO** DO I=LMI,LMA-1,LH XP(I+2*LMA+1)=FM(I+1)**ENDDO** DO I=LMI.LMA.LH XP(I+3*LMA+1)=FS(I)**ENDDO** DO I=LMI,LMA,LH XP(I+4*LMA+2)=FPI(I)**ENDDO** DO I=LMI,LMA-1,LH XP(I+5*LMA+3)=FOI(I+1)**ENDDO** DO I=LMI,LMA-1,LH XP(I+6*LMA+3)=FMI(I+1)**ENDDO** DO I=LMI,LMA,LH XP(I+7*LMA+3)=FSI(I)**ENDDO** EL=11.48D-000 CC='SECTLS.DAT' EC=EL*PM/AM1

```
SK=EC*B1
SS=DSORT(SK)
GG=3.44476D-002*Z1*Z2*PM/SS
CALL VAR(ST.FH.NI,XP,EPP,XI,NV)
PRINT *."
                  XI-KV=".XI
DO I=LMI,LMA,LH
FP(I)=XP(I)
ENDDO
DO I=LMI,LMA-1,LH
FO(I+1)=XP(I+LMA+1)
ENDDO
DO I=LMI.LMA-1.LH
FM(I+1)=XP(I+2*LMA+1)
ENDDO
DO I=LMI,LMA,LH
FS(I)=XP(I+3*LMA+1)
ENDDO
F0(0)=FP(0); FM(0)=FP(0)
DO I=LMI.LMA.LH
FPI(I)=XP(I+4*LMA+2)
ENDDO
DO I=LMI,LMA-1,LH
FOI(I+1)=XP(I+5*LMA+3)
ENDDO
DO I=LMI,LMA-1,LH
FMI(I+1)=XP(I+6*LMA+3)
ENDDO
DO I=LMI,LMA,LH
FSI(I)=XP(I+7*LMA+3)
ENDDO
FOI(0)=FPI(0); FMI(0)=FPI(0)
DO L=LN,LV,LH
EP(L)=DEXP(-2.0D-000*FPI(L))
EM(L)=DEXP(-2.0D-000*FMI(L))
E0(L)=DEXP(-2.0D-000*F0I(L))
ES(L)=DEXP(-2.0D-000*FSI(L))
ENDDO
```

```
SRT=0.0D-000; SRS=0.0D-000;
                               SST=0.0D-000:
                                              SSS=0.0D-
000
DO L=LN.LV.LH
AP=FP(L)
AM = FM(L)
A0=F0(L)
ASS=FS(L)
L1=2*L+3
L_{2=2*L+1}
L3=2*L-1
SRT=SRT+L1*(1.0D-000-EP(L)**2)+L2*(1.0D-000-
E0(L)^{**2}+L3^{*}(1.0D-000-EM(L)^{**2})
SRS=SRS+L2*(1.0D-000-ES(L)**2)
SST=SST+L1*EP(L)**2*DSIN(AP)**2+L2*E0(L)**2*DSIN(A
0)**2+L3*EM(L)**2*DSIN(AM)**2
SSS=SSS+L2*ES(L)**2*DSIN(ASS)**2
ENDDO
SRT=10.0D-000*PI*SRT/SK/3.0D-000
SRS=10.0D-000*PI*SRS/SK
SIGR=1.0D-000/4.0D-000*SRS+3.0D-000/4.0D-000*SRT
SST=10.0D-000*4.0D-000*PI*SST/SK/3.0D-000
SSS=10.0D-000*4.0D-000*PI*SSS/SK
SIGS=1.0D-000/4.0D-000*SSS+3.0D-000/4.0D-000*SST
                      SIGMS-TOT=",SIGS
!PRINT *."
PRINT *,"
           Т
                SE
                       ST
                                XI"
DO I=1.NT
WRITE(*,2)TT(I),SE(I),ST(I),DS(I)
ENDDO
PRINT *.' FP
                F0
                      FM
                            FS'
DO L=LMI.LMA.LH
FM(L)=FM(L)*180.0D-000/PI
FP(L)=FP(L)*180.0D-000/PI
FMI(L)=FMI(L)*180.0D-000/PI
FPI(L) = FPI(L) * 180.0D - 000/PI
FO(L) = FO(L) * 180.0D - 000/PI
F0I(L)=F0I(L)*180.0D-000/PI
FS(L)=FS(L)*180.0D-000/PI
FSI(L)=FSI(L)*180.0D-000/PI
```

```
WRITE(*.2) FP(L).F0(L).FM(L).FS(L)
ENDDO
OPEN (1.FILE=CC)
WRITE(1.*)"
                   ECM
                           XI"
             EL.
WRITE(1,4) EL.EC.XI
WRITE(1.*) " T
                    SE
                              ST
                                       XI"
DO I=1.NT
WRITE(1,2) TT(I), SE(I), ST(I), DS(I)
ENDDO
WRITE(1.*) "
             FP(L) = FO(L) = FM(L) = FS(L)''
DO L=LN.LV
WRITE(1.2) FP(L).F0(L).FM(L).FS(L)
ENDDO
CLOSE(1)
OPEN (1,FILE=BB)
DO L=LN,LV
WRITE(1,3) FP(L), FO(L), FM(L), FS(L)
ENDDO
CLOSE(1)
4 FORMAT(1x.3F10.3)
2 FORMAT(1x,4F10.3)
3 FORMAT(1x,4F14.7)
END
SUBROUTINE VAR(ST, PHN, NI, XP, EP, AMIN, NV)
IMPLICIT REAL(8) (A-Z)
INTEGER I,LMI,LH,NV,NI,NPP,NT,IIN,NN,NP
DIMENSION XPN(0:50), XP(0:50), ST(0:50)
COMMON /A/ LH.LMI.NT.PI.NP.NPP
DO I=LMI,NP,LH
XPN(I)=XP(I)
ENDDO
NN=LMI
PRINT *,NN,XPN(NN)*180.0D-000/PI
PH=PHN
CALL DET(XPN.ST.ALA)
B=ALA
IF (NV==0) GOTO 3013
```

```
PRINT *.ALA
DO IIN=1,NI
NN=-LH
PRINT *.ALA.IIN
GOTO 1119
1159 XPN(NN)=XPN(NN)-PH*XP(NN)
1119 NN=NN+LH
IN=0
2229 A=B
XPN(NN)=XPN(NN)+PH*XP(NN)
IF (NP==2*NPP+1) GOTO 7777
IF (NN<(NP/2)) GOTO 7777
IF (XPN(NN)<0) GOTO 1159
7777 IN=IN+1
CALL DET(XPN,ST,ALA)
B=ALA
GOTO 5678
5678 CONTINUE
IF (B<A) GOTO 2229
C=A
XPN(NN)=XPN(NN)-PH*XP(NN)
IF (IN>1) GOTO 3339
PH=-PH
GOTO 5559
3339 IF (ABS((C-B)/(B))<EP) GOTO 4449
PH=PH/2
5559 B=C
GOTO 2229
4449 PH=PHN
B=C
IF (NN<NP) GOTO 1119
AMIN=B
PH=PHN
ENDDO
3013 AMIN=B
DO I=LMI.NP.LH
XP(I)=XPN(I)
ENDDO
```

```
END
SUBROUTINE DET(XP,ST,XI)
IMPLICIT REAL(8) (A-Z)
INTEGER I.NT
DIMENSION XP(0:50).ST(0:50)
COMMON /B/ SE(0:50), DS(0:50), DE(0:50), NT
S=0.0D-000
CALL SEC(XP,ST)
DO I=1.NT
DS(I) = ((ST(I) - SE(I))) * 2/(0.025 * SE(I)) * 2
S=S+DS(I)
ENDDO
XI=S/NT
END
SUBROUTINE SEC(XP.ST)
IMPLICIT REAL(8) (A-Z)
INTEGER I.L.II.LH.LN.LV.NP.NPP.LMI.NT
COMMON
                                              /D/
FP(0:50),FPI(0:50),EP(0:50),F0(0:50),F0I(0:50),E0(0:50),FM(0:5
0),FMI(0:50),EM(0:50),FS(0:50),FSI(0:50),ES(0:50)
COMMON /C/ SS.GG,LN,LV,POL(0:50),TT(0:50)
COMMON /A/ LH,LMI,NT,PI,NP,NPP
DIMENSION
S0(0:50),P(0:50),P1(0:50),P2(0:50),ST(0:50),XP(0:50)
DO I=LN.LV.LH
FP(I)=XP(I)
ENDDO
DO I=LN.LV-1.LH
II=I+LV+1
FO(I+1)=XP(II)
ENDDO
DO I=LN,LV-1,LH
II = I + 2 * LV + 1
FM(I+1)=XP(II)
ENDDO
DO I=LN,LV,LH
```

```
II=I+3*LV+1
FS(I)=XP(II)
ENDDO
F0(0)=FP(0): FM(0)=FP(0)
DO I=LN.LV.LH
II=I+4*LV+2
FPI(I)=XP(II)
ENDDO
DO I=LN.LV-1.LH
II=I+5*LV+3
FOI(I+1)=XP(II)
ENDDO
DO I=LN,LV-1,LH
II=I+6*LV+3
FMI(I+1)=XP(II)
ENDDO
DO I=LN,LV,LH
II=I+7*LV+3
FSI(I)=XP(II)
ENDDO
FOI(0) = FPI(0); FMI(0) = FPI(0)
DO L=LN,LV,LH
EP(L)=DEXP(-2.0D-000*FPI(L))
EM(L)=DEXP(-2.0D-000*FMI(L))
E0(L) = DEXP(-2.0D-000*F0I(L))
ES(L)=DEXP(-2.0D-000*FSI(L))
ENDDO
CALL CULFAZ(GG,S0)
DO I=1,NT
T=TT(I)*PI/180.0D-000
X = DCOS(T)
CALL CULAMP(X,GG,S0,RECUL,AMCUL)
CALL POLLEG(X,LV,P)
CALL FUNLEG1(X,LV,P1)
CALL FUNLEG2(X,LV,P2)
RES=0.0D-000; AMS=0.0D-000; REA=0.0D-000; AMA=0.0D-
000; REB=0.0D-000; AMB=0.0D-000
REC=0.0D-000; AMC=0.0D-000; RED=0.0D-000; AMD=0.0D-
```

```
000: REE=0.0D-000: AME=0.0D-000
DO L=LN,LV,LH
FP1=2.0D-000*FP(L);
                    FM1=2.0D-000*FM(L):
                                         F01=2.0D-
000*F0(L)
SL=2.0D-000*S0(L); C=DCOS(SL); S=DSIN(SL); FS1=2.0D-
000*FS(L)
AL1P=EP(L)*DCOS(FP1)-1.0D-000
AL2P=EP(L)*DSIN(FP1)
AL1M=EM(L)*DCOS(FM1)-1.0D-000
AL2M=EM(L)*DSIN(FM1)
AL10=E0(L)*DCOS(F01)-1.0D-000
AL20=E0(L)*DSIN(F01)
A1=(L+1)*AL1P+L*AL1M
A2=(L+1)*AL2P+L*AL2M
REA=REA+(A2*C+A1*S)*P(L)
AMA=AMA+(A2*S-A1*C)*P(L)
B1=(L+2)*AL1P+(2*L+1)*AL10+(L-1)*AL1M
B2=(L+2)*AL2P+(2*L+1)*AL20+(L-1)*AL2M
REB=REB+(B2*C+B1*S)*P(L)/2.0D-000
AMB=AMB+(B2*S-B1*C)*P(L)/2.0D-000
IF (L<1) GOTO 2111
C1=AL1P-AL1M
C2=AL2P-AL2M
CC1=1.0D-000/(DSORT(2.0D-000))
REC=REC+(C2*C+C1*S)*P1(L)*CC1
AMC=AMC+(C2*S-C1*C)*P1(L)*CC1
DD1=1.0D-000/(DSORT(2.0D-000)*L*(L+1))
D1=L*(L+2)*AL1P-(2*L+1)*AL10-(L**2-1)*AL1M
D2=L*(L+2)*AL2P-(2*L+1)*AL20-(L**2-1)*AL2M
RED=RED+(D2*C+D1*S)*P1(L)*DD1
AMD=AMD+(D2*S-D1*C)*P1(L)*DD1
2111 IF (L<2) GOTO 2222
EE1=1.0D-000/(2*L*(L+1))
E1=L*AL1P-(2*L+1)*AL10+(L+1)*AL1M
E2=L*AL2P-(2*L+1)*AL20+(L+1)*AL2M
REE=REE+(E2*C+E1*S)*P2(L)*EE1
AME=AME+(E2*S-E1*C)*P2(L)*EE1
2222 ENDDO
```

```
RES=0.0D-000: AMS=0.0D-000
DO L=LN,LV,LH
SL=2.0D-000*S0(L)
C=DCOS(SL)
S=DSIN(SL)
FS1=2.0D-000*FS(L)
ALS=ES(L)*DCOS(FS1)-1.0D-000
BS=ES(L)*DSIN(FS1)
RES=RES+(2*L+1)*(BS*C+ALS*S)*P(L)
AMS=AMS+(2*L+1)*(BS*S-ALS*C)*P(L)
ENDDO
9191 CONTINUE
RES=RECUL+RES
AMS=AMCUL+AMS
SES=10.0D-000*(RES**2+AMS**2)/4.0D-000/SS**2
REA=RECUL+REA
AMA=AMCUL+AMA
REB=RECUL+REB
AMB=AMCUL+AMB
AA=REA**2+AMA**2
BB=REB**2+AMB**2
CC=REC**2+AMC**2
DD=RED**2+AMD**2
EE=REE**2+AME**2
SET=10.0D-000*(AA+2*(BB+CC+DD+EE))/4.0D-
000/SS**2/3.0D-000
S=3.0D-000/4.0D-000*SET+1.0D-000/4.0D-000*SES
ST(I)=S
ENDDO
END
SUBROUTINE CULAMP(X.GG.S0.RECUL.AMCUL)
! ****** КУЛОНОВСКАЯ АМПЛИТУЛА ********
IMPLICIT REAL(8) (A-Z)
DIMENSION S0(0:20)
A=2.0D-000/(1.0D-000-X)
S00=2.0D-000*S0(0)
BB=-GG*A
AL=GG*DLOG(A)+S00
```

```
RECUL=BB*DCOS(AL)
AMCUL=BB*DSIN(AL)
END
SUBROUTINE POLLEG(X.L.P)
! *********************** ПОЛИНОМ ЛЕЖАНДРА *********
IMPLICIT REAL(8) (A-Z)
INTEGER I.L
DIMENSION P(0:20)
P(0)=1.0D-000
P(1)=X
DO I=2.L
P(I)=(2.0D-000*I-1.0D-000)*X/I*P(I-1)-(I-1.0D-000)/I*P(I-2)
ENDDO
END
SUBROUTINE FUNLEG1(X.L.P)
! *********** ФУНКШИЯ ЛЕЖАНЛРА ********
IMPLICIT REAL(8) (A-Z)
INTEGER I.L
DIMENSION P(0:20)
P(0)=0.0D-000
P(1)=DSQRT(ABS(1.0D-000-X**2))
DO I=2.L
P(I)=(2.0D-000*I-1.0D-000)*X/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*I(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*I(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*P(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1.0D-000)*I(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)-I/(I-1)
000)*P(I-2)
ENDDO
END
SUBROUTINE FUNLEG2(X,L,P)
! ************* ФУНКЦИЯ ЛЕЖАНДРА ********
IMPLICIT REAL(8) (A-Z)
INTEGER L
DIMENSION P(0:20)
P(0)=0.0D-000
P(1)=0.0D-000
P(2)=3.0D-000*ABS(1.0D-000-X**2)
DO I=3.L
P(I)=(2.0D-000*I-1.0D-000)*X/(I-2.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(
000)/(I-2.0D-000)*P(I-2)
ENDDO
```

```
END
SUBROUTINE CULFAZ(G,F)
IMPLICIT REAL(8) (A-Z)
INTEGER I.N
DIMENSION F(0:20)
C=0.577215665D-000
S=0.D-000
N = 50
A1=1.202056903D-000/3.D-000
A2=1.036927755D-000/5.D-000
DO I=1.N
A=G/I-DATAN(G/I)-(G/I)**3/3.D-000+(G/I)**5/5.D-000
S=S+A
ENDDO
FAZ=-C*G+A1*G**3-A2*G**5+S
F(0)=FAZ
DO I=1.20
F(I)=F(I-1)+DATAN(G/I)
ENDDO
END
```

Приведем результаты контрольного счета по этой программе для случая упругого p^3 He рассеяния при энергии 11.48 MэB [97,117], где с учетом синглет - триплетного смешивания для χ^2 было получено 0.45. В этих работах в табличном виде приведены дифференциальные сечения, их ошибки и фазы рассеяния, полученные при фазовом анализе, которые мы используем для контрольных расчетов.

В распечатке результатов приняты следующие обозначения: θ – угол рассеяния, σ_e – экспериментальные сечения, σ_t – вычисленные сечения, χ^2_i – парциальные χ^2 для данного угла, χ^2 – полное среднее χ^2 , δ_m – триплетная фаза δ с J = L - 1, δ_0 – фаза при J = L, δ_p – фаза при J = L + 1, δ_s – синглетная фаза рассеяния. В первой строчке распечатки фазы соответствуют орбитальному моменту L = 0, во второй L = 1 и в третьей L = 2.

$\chi^2 = 7.375 \text{E-}001$					
θ	σ_{e}	σ_t	χ^{2}_{i}		
27.640	223.100	229.159	1.179		
31.970	222.000	222.687	0.015		
36.710	211.900	211.146	0.020		
82.530	54.270	53.522	0.302		
90.000	36.760	36.249	0.309		
96.030	25.700	25.467	0.133		
103.800	16.780	16.162	2.165		
110.550	13.210	12.598	3.444		
116.570	13.210	13.120	0.075		
125.270	20.260	19.962	0.341		
133.480	32.210	32.333	0.023		
140.790	45.950	46.975	0.794		
147.210	58.820	61.388	3.052		
153.900	75.460	76.517	0.313		
162.140	92.720	93.062	0.022		
165.670	97.700	98.823	0.212		
166.590	101.100	100.157	0.139		

$\delta_{\rm p}$	δ_0	δ_{m}	$\delta_{\rm s}$
-88.800	-88.800	-88.800	-84.600
66.700	49.400	44.300	21.400
2.500	2.500	2.500	-18.600

Поскольку эта программа не учитывает синглет - триплетного смешивания, то и результаты для χ^2 получаются несколько больше, чем в работах [97,117].

Теперь для сравнения приведем результаты с теми же фазами, с которыми выполнялись контрольные расчеты по программам на языке TurboBasic в нашей предыдущей работе [24] и была получена величина $\chi^2 = 0.74$.

θ	σ_{e}	σ_t
27.64	223.10	229.16
31.97	222.00	222.69
36.71	211.90	211.15

82.53	54.27	53.52
90.00	36.76	36.25
96.03	25.70	25.47
103.80	16.78	16.16
110.55	13.21	12.60
116.57	13.21	13.12
125.27	20.26	19.96
133.48	32.21	32.33
140.79	45.95	46.98
147.21	58.82	61.39
153.90	75.46	76.52
162.14	92.72	93.06
165.67	97.70	98.82
166.59	101.10	100.16

Как видно эти результаты с точностью до ошибок округления совпадают, т.е. не зависят от языка, на котором написана программа. Однако переход на язык Fortran - 90 позволил существенно повысить скорость работы всех компьютерных программ.

Если теперь выполнить полное варьирование фаз, с поиском минимального значения χ^2 , то после, примерно, 3 000 итераций получим следующий результат:

$\chi^2 = 2.27 \text{E}-001$					
θ	σ_{e}	σ_t	χ^{2}_{i}		
27.640	223.100	224.854	0.099		
31.970	222.000	221.150	0.023		
36.710	211.900	211.107	0.022		
82.530	54.270	53.832	0.104		
90.000	36.760	36.715	0.002		
96.030	25.700	26.026	0.257		
103.800	16.780	16.737	0.011		
110.550	13.210	13.072	0.175		
116.570	13.210	13.423	0.415		
125.270	20.260	19.928	0.430		
133.480	32.210	31.955	0.100		

Дубовиченко С.Б. Термоядерные процессы Вселенной

140.79	0 45.950	46.330	0.109
147.21	0 58.820	60.563	1.405
153.90	0 75.460	75.569	0.003
162.14	0 92.720	92.038	0.087
165.67	0 97.700	97.785	0.001
166.59	0 101.100	99.116	0.616
$\delta_{\rm p}$	δ_0	$\delta_{\rm m}$	$\delta_{\rm s}$
-84.530	-84.530	-84.530	-93.630
56.144	46.185	42.904	44.694
3.404	3.584	4.982	-19.086

Полученные новые фазы рассеяния несколько отличаются от предыдущих результатов, и χ^2 уменьшился более чем в три раза.

Рассмотрим далее рассеяние нетождественных частиц с полуцелым спином и учетом спин - орбитальных взаимодействий, смешивания различных орбитальных состояний за счет тензорных сил и смешивания синглет - триплетных состояний.

Дифференциальное сечение рассеяния имеет более сложный вид, в формулы для сечений входят, как фазы рассеяния, так и параметры смешивания состояний с разным спином и орбитальным моментом, а наиболее полные выражения для таких сечений приведены в работе [118]

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{1}{2k^2} \{ |A|^2 + |B|^2 + |C|^2 + |D|^2 + |E|^2 + |F|^2 + |G|^2 + |H|^2 \}$$

Амплитуды рассеяния записываются в виде

$$\begin{split} A &= f_c^{'} + \frac{1}{4} \sum_{L=0}^{\infty} P_L(x) \Big\{ -\sqrt{L(L-1)} U_{L,1;L-2,1}^{L-1} + (L+2) U_{L,1;L,1}^{L+1} + (2L+1) U_{L,1;L,1}^{L} + \\ &+ (L-1) U_{L,1;L,1}^{L-1} - \sqrt{(L+1)(L+2)} U_{L,1;L+2,1}^{L+1} \Big\} \end{split}$$

$$\begin{split} B &= f_c^{'} + \frac{1}{4} \sum_{L=0}^{\infty} P_L(x) \Big\{ \sqrt{L(L-1)} U_{L,1;L-2,1}^{L-1} + (L+1) U_{L,1;L,1}^{L+1} + (2L+1) U_{L,0;L,0}^{L} + \\ &+ L U_{L,1;L,1}^{L-1} + \sqrt{(L+1)(L+2)} U_{L,1;L+2,1}^{L+1} \Big\} \quad, \\ C &= \frac{1}{4} \sum_{L=0}^{\infty} P_L(x) \Big\{ \sqrt{L(L-1)} U_{L,1;L-2,1}^{L-1} + (L+1) U_{L,1;L,1}^{L+1} - (2L+1) U_{L,0;L,0}^{L} + \\ &+ L U_{L,1;L,1}^{L-1} + \sqrt{(L+1)(L+2)} U_{L,1;L+2,1}^{L+1} \Big\} \quad, \end{split}$$

$$D = -\frac{1}{4}i\mathrm{Sin}\Theta\sum_{L=1}^{\infty} P_{L}'(x) / \sqrt{L(L+1)} \left\{ -\sqrt{(L+1)(L-1)}U_{L,1;L-2,1}^{L-1} + \sqrt{L(L+1)}U_{L,1;L,1}^{L+1} - \sqrt{L(L+1)}U_{L,1;L,1}^{L-1} + \sqrt{L(L+2)}U_{L,1;L+2,1}^{L+1} - (2L+1)U_{L,1;L,0}^{L} \right\},$$

$$\begin{split} E &= -\frac{1}{4} i \mathrm{Sin} \theta \sum_{L=1}^{\infty} P_{L}^{'}(x) / \sqrt{L(L+1)} \left\{ -\sqrt{(L+1)(L-1)} U_{L,1;L-2,1}^{L-1} + \sqrt{L(L+1)} U_{L,1;L,1}^{L+1} - \sqrt{L(L+1)} U_{L,1;L,1}^{L-1} + \sqrt{L(L+2)} U_{L,1;L+2,1}^{L+1} + (2L+1) U_{L,1;L,0}^{L} \right\} \quad, \end{split}$$

$$\begin{split} F &= -\frac{1}{4} i \mathrm{Sin}^2 \Theta \sum_{L=2}^{\infty} P_L^{'}(x) / \sqrt{(L-1)L(L+1)(L+2)} \left\{ -\sqrt{(L+1)(L+2)} U_{L,1;L-2,1}^{L-1} + \right. \\ &+ \sqrt{\frac{L(L-1)(L+2)}{L+1}} U_{L,1;L,1}^{L+1} - (2L+1) \sqrt{\frac{(L-1)(L+2)}{L(L+1)}} U_{L,1;L,1}^{L} + \\ &+ \sqrt{\frac{(L-1)(L+1)(L+2)}{L}} U_{L,1;L,1}^{L-1} - \sqrt{L(L-1)} U_{L,1;L+2,1}^{L+1} \right\}, \\ G &= -\frac{1}{4} i \mathrm{Sin} \Theta \sum_{L=1}^{\infty} P_L^{'}(x) / \sqrt{L(L+1)} \left\{ \sqrt{(L-1)(L+1)} U_{L,1;L-2,1}^{L-1} + (L+2) \sqrt{\frac{L}{L+1}} U_{L,1;L,1}^{L+1} - \\ &- \frac{(2L+1)}{\sqrt{L(L+1)}} U_{L,1;L,1}^{L} - (L-1) \sqrt{\frac{(L+1)}{L}} U_{L,1;L,1}^{L-1} - \sqrt{L(L+2)} U_{L,1;L+2,1}^{L+1} - (2L+1) U_{L,0;L,1}^{L} \right\}, \\ H &= -\frac{1}{4} i \mathrm{Sin} \Theta \sum_{L=1}^{\infty} P_L^{'}(x) / \sqrt{L(L+1)} \left\{ \sqrt{(L-1)(L+1)} U_{L,1;L-2,1}^{L-1} + (L+2) \sqrt{\frac{L}{L+1}} U_{L,1;L,1}^{L+1} - \\ &- \frac{(2L+1)}{\sqrt{L(L+1)}} U_{L,1;L,1}^{L} - (L-1) \sqrt{\frac{(L+1)}{L}} U_{L,1;L,1}^{L-1} - \sqrt{L(L+2)} U_{L,1;L+2,1}^{L+1} + (2L+1) U_{L,1;L,1}^{L+1} - \\ &- \frac{(2L+1)}{\sqrt{L(L+1)}} U_{L,1;L,1}^{L} - (L-1) \sqrt{\frac{(L+1)}{L}} U_{L,1;L,1}^{L-1} - \sqrt{L(L+2)} U_{L,1;L+2,1}^{L+1} + (2L+1) U_{L,0;L,1}^{L+1} \right\} . \end{split}$$

Матрица рассеяния представляется в форме

_

_

$$U_{L,S;L,S'}^{J} = U_{L,S;L,S}^{J} = \exp[i(\alpha_{L} + \alpha_{L'})](S_{L,S;L,S}^{J} - \delta_{L,L'}\delta_{S,S'})$$

и, например, при L = 1 и J = 1 с учетом смешивания $\varepsilon_{1,0}^1 = \varepsilon_{S,S'}^J$ синглетного и триплетного состояний записывается

$$\begin{split} S_{1,0;1,0}^{1} &= \cos^{2} \varepsilon_{1,0}^{1} \exp(2i\delta_{0,1}^{1}) + \sin^{2} \varepsilon_{1,1} \exp(2i\delta_{1,1}^{1}) \quad , \\ S_{1,1;1,1}^{1} &= \sin^{2} \varepsilon_{1,0}^{1} \exp(2i\delta_{0,1}^{1}) + \cos^{2} \varepsilon_{1,1} \exp(2i\delta_{1,1}^{1}) \quad , \\ S_{1,0;1,1}^{1} &= S_{1,1;1,0}^{1} = \frac{1}{2} \sin(2\varepsilon_{1,0}^{1}) \left(\exp(2i\delta_{0,1}^{1}) - \exp(2i\delta_{1,1}^{1}) \right) \quad , \end{split}$$

где $\delta_{k,k'}$ – дельта функция, $x = \cos(\theta)$, величины без штриха обозначают начальное состояние, а со штрихом - конечное при том же полном моменте *J*, кулоновские фазы α_L определены в пункте П1.2 Приложения 1, а ядерные фазы $\delta_{S,L}^J$ считаются комплексными, чтобы учесть неупругие каналы.

Смешивание $\varepsilon_1 = \varepsilon_{S,S'}^J$ триплетных (спины *S* и *S*', и полный момент равны 1) *S* - и *D* - состояний определяется следующими выражениями для матрицы рассеяния

$$S_{0,0}^{1} = \operatorname{Cos}^{2} \varepsilon_{1} \exp(2i\delta_{0}^{1}) + \operatorname{Sin}^{2} \varepsilon_{1} \exp(2i\delta_{2}^{1}) ,$$

$$S_{2,2}^{1} = \operatorname{Sin}^{2} \varepsilon_{1} \exp(2i\delta_{0}^{1}) + \operatorname{Cos}^{2} \varepsilon_{1} \exp(2i\delta_{2}^{1}) ,$$

$$S_{0,2}^{1} = S_{2,0}^{1} = \frac{1}{2} \operatorname{Sin}(2\varepsilon_{1}) \left[\exp(2i\delta_{0}^{1}) - \exp(2i\delta_{2}^{1}) \right] .$$

Штрихи у полиномов Лежандра обозначают производные, а кулоновская амплитуда рассеяния записана в форме

$$f_{c}'(\theta) = -\left(\frac{i\eta}{2\mathrm{Sin}^{2}(\theta/2)}\right) \exp\left\{i\eta\ln[\mathrm{Sin}^{-2}(\theta/2)]\right\}$$

Производные полиномов Лежандра связаны с функциями Лежандра следующим образом

$$P_n^m(x) = (1 - x^2)^{m/2} \frac{d^m P_n(x)}{dx^m} = (1 - x^2)^{m/2} \frac{d^{m+n} (x^2 - 1)^n}{dx^{m+n}} = Sin^m \theta \frac{d^m P_n(\cos\theta)}{(d\cos\theta)^m}$$

Если в этих выражениях пренебречь тензорным взаимодействием и синглет - триплетным смешиванием, то матрица рассеяния примет обычный вид $\exp(2i\delta_{S,L})$ с комплексной фазой.

Следующая программа основана на этих выражениях и учитывает синглет - триплетное смешивание [97,117,118]. Смешивание EPS учитывается только для L = 1. В программе явно заданы значения экспериментальных сечений, их ошибок и фаз рассеяния. Обозначения переменных, параметров и блоков, как в предыдущей программе.

Операторы

READ(1,*) TT(L),SE(L),DE(L)

И

READ(1,*) FP(I),F0(I),FM(I),FS(I),EPS(I)

вначале программы считывают из файлов

AA='SEC.DAT' BB='FAZTENZ.DAT'

те же данные, которые явно заданы в самой программе, т.е. эти исходные данные можно использовать из программы или из этих файлов.

PROGRAM FAZ_ANAL_P_3He_WIRH_LS_AND_TS IMPLICIT REAL(8) (A-Z) INTEGER I,L,LH,LN,LV,LMA,LMI,NT,NP,NPP,Z1,Z2,LMI1,LH1,NT2,N T1,NI DIMENSION ST(0:50),FP(0:50),F0(0:50),FM(0:50),FS(0:50),ES(0:50) DIMENSION XP(0:50),FPI(0:50),FOI(0:50),FMI(0:50),FSI(0:50),EPS(0:50),EP (0:50),E0(0:50),EM(0:50) COMMON /B/ SE(0:50).DS(0:50).DE(0:50).NT COMMON /C/ LH.LMI.NT1.PI.NP.NPP COMMON /A/ SS.GG.P1.LMI1.LMA.LH1.NT2.POL(0:50). TT(0:50) CHARACTER(11) BB CHARACTER(7) AA CHARACTER(12) CC AA='SEC.DAT' **BB='FAZTENZ.DAT'** CC='SECTTENZ.DAT' PI=4.0D-000*DATAN(1.0D-000) P1=PI Z1=1 72=2AM1=1.0D-000 AM2=3.0D-000 AM=AM1+AM2 A1=41.4686D-000 PM=AM1*AM2/(AM1+AM2) B1=2.0D-000*PM/A1 LMI=0LH=1 LMA=2LN=LMI LMI1=LMI LV=LMA LH1=LH EPP=1.0D-05 NV=1 FH=0.01D-000 NI = 500NPP=2*LMA ! **** ECSPERIMENTAL CROSS SECTION 11.48 ******** SE(1)=223.1D-000: SE(2)=222.0D-000; SE(3)=211.9D-000; SE(4)=54.27D-000; SE(5)=36.76D-000 SE(7)=16.78D-000; SE(6)=25.7D-000; SE(8)=13.21D-000; SE(9)=13.21D-000; SE(10)=20.26D-000 SE(11)=32.21D-000; SE(12)=45.95D-000; SE(13)=58.82D-000; SE(14)=75.46D-000 SE(15)=92.72D-000; SE(16)=97.7D-000; SE(17)=101.1D-000 DE(1)=5.58D-000; DE(2)=5.55D-000; DE(3)=5.3D-000; DE(4)=1.36D-000; DE(5)=0.92D-000 DE(6)=0.64D-000: DE(7)=0.42D-000: DE(8)=0.33D-000: DE(9)=0.33D-000; DE(10)=0.51D-000 DE(12)=1.15D-000: DE(11)=0.81D-000: DE(13)=1.47D-000: DE(14)=1.89D-000 DE(15)=2.32D-000; DE(16)=2.44D-000; DE(17)=2.53D-000 TT(2)=31.97D-000: TT(1)=27.64D-000: TT(3)=36.71D-000: TT(4)=82.53D-000 TT(5)=90.0D-000;TT(6) = 96.03D-000: TT(7) = 103.8D-000: TT(8)=110.55D-000 TT(9)=116.57D-000; TT(10)=125.27D-000; TT(11)=133.48D-000 TT(12)=140.79D-000; TT(13)=147.21D-000;TT(14)=153.9D-000 TT(15)=162.14D-000; TT(16)=165.67D-000; TT(17)=166.59D-000 NT=17 NT1=NT NT2=NT FPI(0)=0.D-000 FP(0) = -88.8D - 000;FP(1)=66.7D-000; FPI(1)=0.D-000 FP(2)=2.5D-000; FPI(2)=0.D-000 FP(3)=1.D-000; FPI(3)=0.D-000F0(0) = FP(0);F0I(0)=0.D-000 F0(1)=49.4D-000; FOI(1)=0.D-000F0(2)=2.5D-000;FOI(2)=0.D-000F0(3)=1.D-000: FOI(3)=0.D-000FM(0) = FP(0): FMI(0)=0.D-000 FM(1)=44.3D-000; FMI(1)=0.D-000 FM(2)=2.5D-000; FMI(2)=0.D-000

FM(3)=1.D-000: FMI(3)=0.D-000 FS(0)=-84.6D-000; FSI(0)=0.D-000 FS(1)=21.4D-000;FSI(1)=0.D-000 FS(2) = -18.6D - 000: FSI(2)=0.D-000 FS(3)=1.D-000: FSI(3)=0.D-000 EPS(1)=11.2D-000 EPS(3)=0.D-000 OPEN (1.FILE=AA) DO L=1.NT READ(1,*) TT(L), SE(L), DE(L)ENDDO CLOSE(1) OPEN (1.FILE=BB) DO I=LN.LV READ(1,*) FP(I),F0(I),FM(I),FS(I),EPS(I) **ENDDO** CLOSE(1)DO L=LN,LV,LH FM(L)=FM(L)*PI/180.0D-000 FP(L)=FP(L)*PI/180.0D-000 F0(L)=F0(L)*PI/180.0D-000 EPS(L)=EPS(L)*PI/180.0D-000 FMI(L)=FMI(L)*PI/180.0D-000 FPI(L)=FPI(L)*PI/180.0D-000 F0I(L)=F0I(L)*PI/180.0D-000 FS(L)=FS(L)*PI/180.0D-000FSI(L)=FSI(L)*PI/180.0D-000 EP(L) = EXP(-2.0D-000*FPI(L))EM(L)=EXP(-2.0D-000*FMI(L))E0(L) = EXP(-2.0D-000*F0I(L))ES(L) = EXP(-2.0D-000*FSI(L))**ENDDO** FH=FH*PI/180.0D-000

NP=5*LMA+2 IF (NP>(5*LMA+2)) GOTO 9988 DO L=LN,LV,LH FMI(L)=0FPI(L)=0FOI(L)=0FSI(L)=0**ENDDO** 9988 DO I=LMI,LMA,LH XP(I)=FP(I)**ENDDO** DO I=LMI,LMA-1,LH XP(I+LMA+1)=FO(I+1)ENDDO DO I=LMI.LMA-1.LH XP(I+2*LMA+1)=FM(I+1)**ENDDO** DO I=LMI,LMA,LH XP(I+3*LMA+1)=FS(I)**ENDDO** DO I=LMI,LMA,LH XP(I+4*LMA+2)=EPS(I)ENDDO DO I=LMI,LMA,LH XP(I+5*LMA+3)=FPI(I)**ENDDO** DO I=LMI,LMA-1,LH XP(I+6*LMA+4)=FOI(I+1)ENDDO DO I=LMI,LMA-1,LH XP(I+7*LMA+4)=FMI(I+1)**ENDDO** DO I=LMI,LMA,LH XP(I+8*LMA+4)=FSI(I)**ENDDO** EL=11.480D-000 EC=EL*PM/AM1 SK=EC*B1 SS=DSORT(SK) GG=3.44476D-002*Z1*Z2*PM/SS

CALL VAR(ST,FH,LMA,NI,XP,EPP,XI,NV) PRINT *." XI-KV=",XI DO I=LMI,LMA,LH FP(I)=XP(I)ENDDO DO I=LMI,LMA-1,LH FO(I+1)=XP(I+LMA+1)**ENDDO** DO I=LMI,LMA-1,LH FM(I+1)=XP(I+2*LMA+1)**ENDDO** DO I=LMI.LMA.LH FS(I)=XP(I+3*LMA+1)**ENDDO** DO I=LMI,LMA,LH EPS(I)=XP(I+4*LMA+2)**ENDDO** F0(0)=FP(0); FM(0)=FP(0)DO I=LMI.LMA.LH FPI(I)=XP(I+5*LMA+3)**ENDDO** DO I=LMI,LMA-1,LH FOI(I+1)=XP(I+6*LMA+4)ENDDO DO I=LMI,LMA-1,LH FMI(I+1)=XP(I+7*LMA+4)**ENDDO** DO I=LMI,LMA,LH FSI(I)=XP(I+8*LMA+4)**ENDDO** F0I(0)=FPI(0); FMI(0)=FPI(0) DO L=LN,LV,LH EP(L) = EXP(-2.0D-000*FPI(L))EM(L)=EXP(-2.0D-000*FMI(L)) E0(L)=EXP(-2.0D-000*F0I(L)) ES(L)=EXP(-2.0D-000*FSI(L)) **ENDDO**

```
SRT=0.0D-000; SRS=0.0D-000;
                               SST=0.0D-000: SSS=0.0D-
000
DO L=LN.LV.LH
AP=FP(L)
AM = FM(L)
A0=F0(L)
ASS=FS(L)
L1=2*L+3
L_{2=2*L+1}
L3=2*L-1
SRT=SRT+L1*(1.0D-000-EP(L)**2)+L2*(1.0D-000-
E0(L)^{**2}+L3^{*}(1.0D-000-EM(L)^{**2})
SRS=SRS+L2*(1.0D-000-ES(L)**2)
SST=SST+L1*EP(L)**2*SIN(AP)**2+L2*E0(L)**2*SIN(A0)*
*2+L3*EM(L)**2*SIN(AM)**2
SSS=SSS+L2*ES(L)**2*SIN(ASS)**2
ENDDO
SRT=10.0D-000*PI*SRT/SK/3.0D-000
SRS=10.0D-000*PI*SRS/SK
SIGR=1.0D-000/4.0D-000*SRS+3.0D-000/4.0D-000*SRT
SST=10*4*PI*SST/SK/3
SSS=10.0D-000*4*PI*SSS/SK
SIGS=1.0D-000/4.0D-000*SSS+3.0D-000/4.0D-000*SST
                     SIGMS-TOT=",SIGS
PRINT *."
PRINT *,"
           Т
                SE
                        ST
                              XI"
DO I=1.NT
WRITE(*,2) TT(I), SE(I), ST(I), DS(I)
ENDDO
PRINT *."
           FP
                  F0
                        FM
                               FS
                                      EPS"
DO L=LMI.LMA.LH
FM(L)=FM(L)*180.0D-000/PI
FP(L)=FP(L)*180.0D-000/PI
FMI(L)=FMI(L)*180.0D-000/PI
FPI(L) = FPI(L) * 180.0D - 000/PI
FO(L) = FO(L) * 180.0D - 000/PI
F0I(L)=F0I(L)*180.0D-000/PI
FS(L)=FS(L)*180.0D-000/PI
FSI(L)=FSI(L)*180.0D-000/PI
```

```
190
```

```
EPS(L)=EPS(L)*180.0D-000/PI
WRITE(*,2) FP(L),FO(L),FM(L),FS(L),EPS(L)
ENDDO
!READ *. A
!IF (A==0) GOTO 1111
!PRINT
!PRINT *,"
             Т
                  POL."
!DO I=1.NT
!PRINT *,TT(I);POL(I)
!ENDDO
OPEN (1.FILE=CC)
WRITE(1.*)"
                     ECM
                             XI"
             EL
WRITE(1,4) EL,EC,XI
WRITE(1.*) "
                          SE
                                       DE
                                                    ST
              Т
XI"
DO I=1.NT
WRITE(1,3) TT(I), SE(I), DE(I), ST(I), DS(I)
ENDDO
WRITE(1.*) "
              FP(L) = FO(L)
                            FM(L) FS(L)"
DO L=LN.LV
WRITE(1,2) FP(L),F0(L),FM(L),FS(L),EPS(L)
ENDDO
CLOSE(1)
OPEN (1,FILE=BB)
DO L=LN.LV
WRITE(1,3) FP(L),F0(L),FM(L),FS(L),EPS(L)
ENDDO
CLOSE(1)
!OPEN (1,FILE=AA)
!DO L=1,NT
!WRITE(1,3) TT(L),SE(L),DE(L)
!ENDDO
!CLOSE(1)
4 FORMAT(3F10.5)
2 FORMAT(5F10.5)
3 FORMAT(4F14.7)
END
SUBROUTINE VAR(ST,PHN,LMA,NI,XP,EP,AMIN,NV)
```

IMPLICIT REAL(8) (A-Z) INTEGER I.LH.NT.NP.NPP.NN.NI.LMA.LMI DIMENSION XPN(0:50), XP(0:50), ST(0:50) COMMON /C/ LH.LMI.NT.PI.NP.NPP DO I=LMI.NP.LH XPN(I)=XP(I)**ENDDO** NN=LMI PH=PHN CALL DET(XPN.ST.ALA) B=ALA IF (NV==0) GOTO 3013 DO IIN=1.NI NN=-LH PRINT *, ALA, IIN GOTO 1119 1159 XPN(NN)=XPN(NN)-PH*XP(NN) 1119 NN=NN+LH IN=02229 A=B XPN(NN)=XPN(NN)+PH*XP(NN) IF (NN<(5*LMA+3)) GOTO 7777 IF (XPN(NN)<0) GOTO 1159 7777 IN=IN+1 CALL DET(XPN,ST,ALA) B=ALA IF (B<A) GOTO 2229 C=A XPN(NN)=XPN(NN)-PH*XP(NN) IF (IN>1) GOTO 3339 PH=-PH GOTO 5559 3339 IF (ABS((C-B)/ABS(B))<EP) GOTO 4449 PH=PH/25559 B=C GOTO 2229 4449 PH=PHN

B=C IF (NN<NP) GOTO 1119 AMIN=B PH=PHN **ENDDO** 3013 AMIN=B DO I=LMI,NP,LH XP(I)=XPN(I)**ENDDO** END SUBROUTINE DET(XP,ST,XI) IMPLICIT REAL(8) (A-Z) INTEGER I.NT DIMENSION XP(0:50), ST(0:50) COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NT S=0.0D-000 CALL SEC(XP,ST) DO I=1.NT DS(I)=((ST(I)-SE(I))/DE(I))**2 S=S+DS(I)**ENDDO** XI=S/NT END SUBROUTINE SEC(XP.ST) IMPLICIT REAL(8) (A-Z) INTEGER I.II.L.LN.LV.LH.NT COMMON /A/ SS,GG,PI,LN,LV,LH,NT,POL(0:50),TT(0:50) DIMENSION S0(0:50),P(0:50),P1(0:50),P2(0:50),XP(0:50),ST(0:50),F0(0:50), FP(0:50),FM(0:50),FS(0:50),EPS(0:50) DIMENSION FOI(0:50),FPI(0:50),FMI(0:50),FSI(0:50),EP(0:50),EM(0:50),ES(0:50), E0(0:50)DO I=LN.LV.LH FP(I)=XP(I)**ENDDO**

DO I=LN.LV-1.LH II=I+LV+1 FO(I+1)=XP(II)**ENDDO** DO I=LN,LV-1,LH II=I+2*LV+1FM(I+1)=XP(II)ENDDO DO I=LN.LV.LH II=I+3*LV+1FS(I)=XP(II)**ENDDO** DO I=LN.LV.LH II=I+4*LV+2EPS(I)=XP(II)**ENDDO** F0(0)=FP(0); FM(0)=FP(0)DO I=LN,LV,LH II=I+5*LV+3FPI(I)=XP(II)**ENDDO** DO I=LN,LV-1,LH II=I+6*LV+4 FOI(I+1)=XP(II)ENDDO DO I=LN,LV-1,LH II=I+7*LV+4FMI(I+1)=XP(II)**ENDDO** DO I=LN,LV,LH II=I+8*LV+4 FSI(I)=XP(II)**ENDDO** F0I(0)=FPI(0); FMI(0)=FPI(0) DO L=LN,LV,LH EP(L)=DEXP(-2.0D-000*FPI(L)) EM(L)=DEXP(-2.0D-000*FMI(L)) E0(L)=DEXP(-2.0D-000*F0I(L))

```
ES(L) = DEXP(-2.0D-000*FSI(L))
ENDDO
CALL CULFAZ(GG.S0)
DO I=1.NT
T=TT(I)*PI/180.0D-000
X = DCOS(T)
CALL CULAMP(X,GG,S0,RECUL,AMCUL)
CALL POLLEG(X,LV,P)
CALL FUNLEG1(X.LV.P1)
CALL FUNLEG2(X,LV,P2)
REA=0.0D-000; AMA=0.0D-000; REB=0.0D-000; AMB=0.0D-
      REC=0.0D-000: AMC=0.0D-000:
000:
                                       RED=0.0D-000;
AMD=0.0D-000
REE=0.0D-000: AME=0.0D-000: RRG=0.0D-000: AAG=0.0D-
                      AMH=0.0D-000:
000:
      REH=0.0D-000;
                                       REF=0.0D-000;
AMF=0.0D-000
DO L=LN.LV.LH
FP1=2.0D-000*FP(L)
FM1=2.0D-000*FM(L)
F01=2.0D-000*F0(L)
SL=2.0D-000*S0(L)
C=DCOS(SL)
S=DSIN(SL)
FS1=2.0D-000*FS(L)
SO=DSIN(EPS(L))**2
CO=DCOS(EPS(L))**2
AL1P=EP(L)*DCOS(FP1)-1.0D-000
AL2P=EP(L)*DSIN(FP1)
AL1M=EM(L)*DCOS(FM1)-1.0D-000
AL2M=EM(L)*DSIN(FM1)
AL10=SO*ES(L)*DCOS(FS1)+CO*E0(L)*DCOS(F01)-1.0D-
000
AL20=SO*ES(L)*DSIN(FS1)+CO*E0(L)*DSIN(F01)
A1=(L+2.0D-000)*AL1P+(2.0D-000*L+1.0D-000)*AL10+(L-
1.0D-000)*AL1M
A2=(L+2.0D-000)*AL2P+(2.0D-000*L+1.0D-000)*AL20+(L-
1.0D-000)*AL2M
REA=REA+(A1*C-A2*S)*P(L)/2.0D-000
```

```
AMA = AMA + (A1*S + A2*C)*P(L)/2.0D-000
ALS=CO*ES(L)*DCOS(FS1)+SO*E0(L)*DCOS(F01)-1.0D-000
BS=CO*ES(L)*DSIN(FS1)+SO*E0(L)*DSIN(F01)
RES=(2.0D-000*L+1.0D-000)*(ALS*C-BS*S)
AMS = (2.0D - 000*L + 1.0D - 000)*(ALS*S + BS*C)
B1=(L+1.0D-000)*AL1P+L*AL1M
B2=(L+1.0D-000)*AL2P+L*AL2M
REB = REB + (B1*C-B2*S+RES)*P(L)/2.0D-000
AMB=AMB+(B1*S+B2*C+AMS)*P(L)/2.0D-000
REC=REC+(B1*C-B2*S-RES)*P(L)/2.0D-000
AMC=AMC+(B1*S+B2*C-AMS)*P(L)/2.0D-000
IF (L<1) GOTO 1211
SI2=1.0D-000/2.0D-000*DSIN(2.0D-000*EPS(L))
AL1=SI2*(ES(L)*DCOS(FS1)-E0(L)*DCOS(F01))
AL2=SI2*(ES(L)*DSIN(FS1)-E0(L)*DSIN(F01))
RE1=(2.0D-000*L+1.0D-
000)*(AL2*C+AL1*S)/DSORT(L*(L+1.0D-000))
AM1=(2.0D-000*L+1.0D-000)*(AL2*S-
AL1*C)/DSQRT(L*(L+1.0D-000))
C1=AL1P-AL1M
C2=AL2P-AL2M
RED=RED+(C2*C+C1*S-RE1)*P1(L)/2.0D-000
AMD=AMD+(C2*S-C1*C-AM1)*P1(L)/2.0D-000
REE=REE+(C2*C+C1*S+RE1)*P1(L)/2.0D-000
AME=AME+(C2*S-C1*C+AM1)*P1(L)/2.0D-000
D1=(L+2.0D-000)/(L+1.0D-000)*AL1P-(2.0D-000*L+1.0D-
000)/(L*(L+1.0D-000))*AL10-(L-1.0D-000)/L*AL1M
D2=(L+2.0D-000)/(L+1.0D-000)*AL2P-(2.0D-000*L+1.0D-
000)/(L*(L+1.0D-000))*AL20-(L-1.0D-000)/L*AL2M
RRG=RRG+(D2*C+D1*S-RE1)*P1(L)/2.0D-000
AAG=AAG+(D2*S-D1*C-AM1)*P1(L)/2.0D-000
REH=REH+(D2*C+D1*S+RE1)*P1(L)/2.0D-000
AMH=AMH+(D2*S-D1*C+AM1)*P1(L)/2.0D-000
1211 IF (L<2) GOTO 2122
F1=1.0D-000/(L+1.0D-000)*AL1P-(2.0D-000*L+1.0D-
000)/(L*(L+1.0D-000))*AL10+AL1M/L
F2=1.0D-000/(L+1.0D-000)*AL2P-(2.0D-000*L+1.0D-
000)/(L*(L+1.0D-000))*AL20+AL2M/L
```

```
REF=REF+(F2*C+F1*S)*P2(L)/2.0D-000
AMF=AMF+(F2*S-F1*C)*P2(L)/2.0D-000
2122 ENDDO
RET=0.0D-000; AMT=0.0D-000; RES=0.0D-000; AMS=0.0D-
000
DO L=LN.LV.LH
SL=2.0D-000*S0(L)
C=DCOS(SL)
S=DSIN(SL)
FS1=2.0D-000*FS(L)
ALS=ES(L)*DCOS(FS1)-1.0D-000
BS=ES(L)*DSIN(FS1)
RES=RES+(2.0D-000*L+1.0D-000)*(BS*C+ALS*S)*P(L)
AMS = AMS + (2.0D - 000*L + 1.0D - 000)*(BS*S - ALS*C)*P(L)
ENDDO
RES=RECUL+RES
AMS=AMCUL+AMS
REA=RECUL+REA
AMA=AMCUL+AMA
REB=RECUL+REB
AMB=AMCUL+AMB
AA=REA**2+AMA**2
BB=REB**2+AMB**2
CC=REC**2+AMC**2
DD=RED**2+AMD**2
EE=REE**2+AME**2
FF=REF**2+AMF**2
HH=REH**2+AMH**2
GGG=RRG**2+AAG**2
SUM=AA+BB+CC+DD+EE+GGG+HH+FF
S=10.0D-000*SUM/2.0D-000/SS**2/4.0D-000
ST(I)=S
!
  POL(I)
                  2*(REA*REE+AMA*AME+REB*REH
          = -
+AMB*AMH+REC*RRG+AMC*AAG+RED*REF+AMD*AM
F)/SUM
ENDDO
END
SUBROUTINE CULAMP(X,GG,S0,RECUL,AMCUL)
```

! ******* КУЛОНОВСКАЯ АМПЛИТУЛА ******** IMPLICIT REAL(8) (A-Z) **DIMENSION S0(0:50)** A=2.0D-000/(1.0D-000-X)S00=2.0D-000*S0(0)BB=-GG*A AL=GG*DLOG(A)+S00 RECUL=-BB*DSIN(AL) AMCUL=BB*DCOS(AL) END SUBROUTINE POLLEG(X,L,P) ! ************ ПОЛИНОМЫ ЛЕЖАНДРА ********* IMPLICIT REAL(8) (A-Z) INTEGER I.L **DIMENSION P(0:50)** P(0)=1.0D-000; P(1)=XDO I=2.LP(I)=(2.0D-000*I-1.0D-000)*X/I*P(I-1)-(I-1.0D-000)/I*P(I-2)ENDDO END SUBROUTINE FUNLEG1(X.L.P) ! ******** ФУНКЦИЯ ЛЕЖАНДРА ******** IMPLICIT REAL(8) (A-Z) INTEGER I.L **DIMENSION P(0:50)** $P(0)=0.0D-000; P(1)=DSQRT(DABS(1.0D-000-X^{**2}))$ DO I=2.L P(I)=(2.0D-000*I-1.0D-000)*X/(I-1.0D-000)*P(I-1)-I/(I-1)+I/(I-1.0D-000)*P(I-1)-I/(I-1)+I/(I-1)000)*P(I-2)**ENDDO** END SUBROUTINE FUNLEG2(X,L,P) IMPLICIT REAL(8) (A-Z) INTEGER I.L DIMENSION P(0:50) P(0)=0.0D-000; P(1)=0.0D-000; P(2)=3.0D-000*DABS(1.0D-000)*DABS(1.0D-000); P(2)=3.0D-000*DABS(1.0D-000)*DABS(1.0D-000); P(2)=3.0D-000*DABS(1.0D-000)*DABS(1.0D-000); P(2)=3.0D-000*DABS(1.0D-000)*DABS(1.0D-000); P(2)=3.0D-000*DABS(1.0D-000)*DABS(1.0D-000); P(2)=3.0D-000*DABS(1.0D-000)*DABS(1.0D-000); P(2)=3.0D-000*DABS(1.0D-000)*DABS(1.0D-000); P(2)=3.0D-000*DABS(1.0D-000)*DABS(000-X**2)

```
DO I=3.L
P(I)=(2.0D-000*I-1.0D-000)*X/(I-2.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I+1.0D-000)*P(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-1)-(I-
000)/(I-2.0D-000)*P(I-2)
ENDDO
END
SUBROUTINE CULFAZ(G.F)
IMPLICIT REAL(8) (A-Z)
INTEGER I.N
DIMENSION F(0:50)
C=0.577215665D-000; S=0.0D-000; N=50
A1=1.202056903D-000/3.0D-000; A2=1.036927755D-000/5.0D-
000
DO I=1.N
A=G/I-DATAN(G/I)-(G/I)**3/3.0D-000+(G/I)**5/5.0D-000
S=S+A
ENDDO
FAZ=-C*G+A1*G**3-A2*G**5+S
F(0)=FAZ
DO I=1.20
F(I)=F(I-1)+DATAN(G/(I))
ENDDO
END
```

С такими же фазами, как в предыдущем случае [97,117], и без учета смешивания мы получаем по этой программе тот же результат, который приведен в качестве контрольного для предыдущей программы с $\chi^2 = 7.375$ E-001:

$\chi^2 = 7.375 \text{E}-001$					
θ	σ_{e}	σ_t	χ^{2}_{i}		
27.64000	223.10000 2	29.15944	1.17923		
31.97000	222.00000	222.68747	.01534		
36.71000	211.90000	211.14558	.02026		
82.53000	54.27000	53.52241	.30217		
90.00000	36.76000	36.24893	.30859		
96.03000	25.70000	25.46703	.13250		

103.80000	16.78000	16.16202	2.16494
110.55000	13.21000	12.59755	3.44437
116.57000	13.21000	13.11973	.07482
125.27000	20.26000	19.96234	.34064
133.48000	32.21000	32.33282	.02299
140.79000	45.95000	46.97500	.79443
147.21000	58.82000	61.38791	3.05158
153.90000	75.46000	76.51701	.31277
162.14000	92.72000	93.06232	.02177
165.67000	97.70000	98.82336	.21196
166.59000	101.10000	100.15680	.13898

$\delta_{\rm p}$	δ_0	δ_{m}	$\delta_{\rm s}$	ε
-88.800	-88.800	-88.800	-84.600	.000
66.700	49.400	44.300	21.400	.000
2.500	2.500	2.500	-18.600	.000

Введение смешивания в *P* - волне позволяет лучше описать сечения упругого рассеяния при тех же фазах из работ [97,117]:

$\chi^2 = 2.93 \text{E}{-}001$					
θ	σ_{e}	σ_t	χ^{2}_{i}		
27.640	223.100	228.038	0.783		
31.970	222.000	221.732	0.002		
36.710	211.900	210.383	0.082		
82.530	54.270	54.215	0.002		
90.000	36.760	36.966	0.050		
96.030	25.700	26.151	0.497		
103.800	16.780	16.739	0.010		
110.550	13.210	13.031	0.295		
116.570	13.210	13.394	0.310		
125.270	20.260	19.972	0.400		
133.480	32.210	32.075	0.028		
140.790	45.950	46.482	0.214		
147.210	58.820	60.704	1.642		
153.900	75.460	75.656	0.011		
Дубовиченко С.Б. Термоядерные процессы Вселенной

162.14	0 92.	720 9	2.029	0.089
165.67	0 97.	700 9	7.733	0.000
166.59	0 101	.100 9	9.054	0.654
δ_{p}	δ_0	$\delta_{\rm m}$	δ_{s}	ε
-88.800	-88.800	-88.800	-84.600	0.000
66.700	49.400	44.300	21.400	11.200
2.500	2.500	2.500	-18.600	0.000

Полученное среднее значение χ^2 несколько меньше, приведенной в работах [97,117] величины 0.45. Вычисления [97,117] выполнялись в середине 60-х годов прошлого века на сравнительно простых вычислительных машинах и, возможно, при не очень высокой точности, что вполне может привести к такому небольшому различию результатов.

Для сравнения приведем результаты при тех же фазах, которые получены в нашей предыдущей работе [24] при $\chi^2 = 0.29$:

2

θ	σ_{e}	σ_{t}	χ^2_i
27.64	223.10	228.04	0.78
31.97	222.00	221.73	0.00
36.71	211.90	210.38	0.08
82.53	54.27	54.22	0.00
90.00	36.76	36.97	0.05
96.03	25.70	26.15	0.49
103.80	16.78	16.74	0.01
110.55	13.21	13.03	0.29
116.57	13.21	13.39	0.31
125.27	20.26	19.97	0.32
133.48	32.21	32.07	0.03
140.79	45.95	46.48	0.21
147.21	58.82	60.70	1.64
153.90	75.46	75.66	0.01
162.14	92.72	92.03	0.09
165.67	97.70	97.73	0.00
166.59	101.10	99.05	0.66

И здесь результаты с точностью до ошибок округления совпадают между собой и, как это должно быть, не зависят от языка программирования.

Если выполнить детальное варьирование фаз и параметра смешивания є, то в результате примерно 10 000 итераций получим, что для лучшего описания имеющихся экспериментальных данных требуется практически нулевое смешивание. Можно сказать, что, по-видимому, не требуется вводить смешивание для наилучшего описания имеющихся экспериментальных данных, хотя точка при 147°, как и в предыдущем случае, по предыдущей программе, описывается сравнительно плохо:

$\chi^{2}_{i} = 2.25 \text{E} \cdot 001$						
θ	σ_{e}	σ_t	χ^{2}_{i}			
27.640	223.100	224.736	0.086			
31.970	222.000	221.181	0.022			
36.710	211.900	211.217	0.017			
82.530	54.270	53.839	0.100			
90.000	36.760	36.717	0.002			
96.030	25.700	26.025	0.259			
103.800	16.780	16.736	0.011			
110.550	13.210	13.072	0.175			
116.570	13.210	13.423	0.415			
125.270	20.260	19.927	0.427			
133.480	32.210	31.953	0.101			
140.790	45.950	46.328	0.108			
147.210	58.820	60.562	1.405			
153.900	75.460	75.570	0.003			
162.140	92.720	92.043	0.085			
165.670	97.700	97.791	0.001			
166.590	101.100	99.123	0.611			

$\delta_{\rm p}$	δ_0	δ_{m}	δ_{s}	3
-83.342	-83.342	-83.342	-97.861	0.000
52.520	50.021	50.444	44.905	-0.00017
3.222	0.122	2.667	-19.114	0.000

202

Заметим, что изменение параметра смешивания ε в любую сторону приводит к заметному подъему среднего χ^2 , ухудшая описание этих экспериментальных данных.

Заключение

Таким образом, в рамках рассматриваемой кластерной модели на основе только E1 перехода удалось, по сути, предсказать общее поведение S - фактора р³Н захвата при энергиях от 50 до 700 кэВ. Действительно, на основе анализа экспериментальных данных выше 700 кэВ около 15 лет назад нами были сделаны расчеты поведения S - фактора для энергий до 10 кэВ [96].

Как теперь видно, результаты этих расчетов хорошо воспроизводят новые данные по S - фактору, полученные в работе [107] (точки на рис.4.4а,б) при энергиях в области от 50 кэВ до 5 МэВ.

Итак, использованная двухчастичная модель, которая основана на межкластерных потенциалах, описывающих фазы упругого рассеяния и характеристики связанного состояния с параметрами, предложенными около 15 лет назад [87], позволяет правильно описать астрофизический *S* - фактор на основе *E*1 перехода во всей рассмотренной области энергий. Структура 3С таких потенциалов определяется на основе классификации кластерных состояний по орбитальным схемам Юнга.