8. РАДИАЦИОННЫЙ р¹²С ЗАХВАТ

Radiative p¹²C capture

Введение

В этой главе рассматривается система p¹²C и процесс радиационного захвата протона ядром ¹²C при астрофизических энергиях. Недавно в работах [27] было выполнено новое измерение дифференциальных сечений упругого p¹²C рассеяния при энергиях от 200 кэВ до 1.1 МэВ (с.ц.м.) в диапазоне углов рассеяния $10^{\circ} \div 170^{\circ}$ с 10% ошибками. На основе этих измерений нами был проведен стандартный фазовый анализ и построен потенциал *S* - состояния для p¹²C системы [89], а затем в потенциальной кластерной модели вычислен астрофизический *S* - фактор при энергиях до 20 кэВ.

Переходя к непосредственному изложению полученных результатов, заметим, что данный процесс является первой термоядерной реакцией СNO - цикла, который присутствует на более поздней стадии развития звезд, когда происходит частичное выгорание водорода. По мере его выгорания, ядро звезды начинает заметно сжиматься, приводя в результате к увеличению давления и температуры внутри звезды и наряду с протон - протонным циклом вступает в действие следующая цепочка термоядерных процессов, называемая, СNO циклом.

8.1 Дифференциальные сечения

При рассмотрении упругого рассеяния в системе частиц со спинами 0 и 1/2 учтем спин - орбитальное расщепление фаз, которое имеет место в ядерных системах типа N^4 He, $^{3}H^{4}$ He, p^{12} C. В этом случае упругое рассеяние ядерных частиц полностью описывается двумя независимыми спиновыми амплитудами (А и В), а сечение представляется в следующем виде [45]:

$$\frac{d\sigma(\theta)}{d\Omega} = |A(\theta)|^2 + |B(\theta)|^2 \quad , \tag{8.1}$$

где

$$A(\theta) = f_{c}(\theta) + \frac{1}{2ik} \sum_{L=0}^{\infty} \{ (L+1)S_{L}^{+} + LS_{L}^{-} - (2L+1) \} \exp(2i\sigma_{L})P_{L}(Cos\theta)$$

$$B(\theta) = \frac{1}{2ik} \sum_{L=0}^{\infty} (S_L^+ - S_L^-) \exp(2i\sigma_L) P_L^1(\cos\theta) \quad .$$
(8.2)

Здесь $S_L^{\pm} = \eta_L^{\pm} \exp(2i\delta_L^{\pm})$ – матрица рассеяния, η_L^{\pm} – параметры неупругости, а знаки "±" соответствуют полному моменту системы $J = L \pm 1/2$, f_c – кулоновская амплитуда, представляемая в виде.

$$f_{\rm c}(\theta) = -\left(\frac{\eta}{2kSin^2(\theta/2)}\right) \exp\{i\eta \ln[Sin^{-2}(\theta/2)] + 2i\sigma_0\} ,$$

 $P_n^m(x)$ – присоединенные полиномы Лежандра, η – кулоновский параметр, μ – приведенная масса частиц, k – волновое число относительного движения частиц $k^2 = 2\mu E/\hbar^2$ во входном канале, E – энергия сталкивающихся частиц в системе центра масс.

Через приведенные амплитуды *А* и *В* можно выразить и векторную поляризацию в упругом рассеянии таких частиц [45]

$$P(\theta) = \frac{2 \operatorname{Im}(AB^*)}{|A|^2 + |B|^2} \quad .$$
(8.3)

Расписывая определение амплитуды В(Θ) (8.2) получим

выражение

$$\operatorname{Re} B = \frac{1}{2k} \sum_{L=0}^{\infty} [aSin(2\sigma_L) + bCos(2\sigma_L)]P_L^1(x) ,$$

$$\operatorname{Im} B = \frac{1}{2k} \sum_{L=0}^{\infty} [bSin(2\sigma_L) - aCos(2\sigma_L)] P_L^{1}(x) ,$$

где

$$a = \eta_L^+ Cos(2\delta_L^+) - \eta_L^- Cos(2\delta_L^-) ,$$

$$b = \eta_L^+ Sin(2\delta_L^+) - \eta_L^- Sin(2\delta_L^-) .$$

Аналогичным способом, для амплитуды $A(\Theta)$ можно найти следующую форму записи [153]

$$\operatorname{Re} A = \operatorname{Re} f_c + \frac{1}{2k} \sum_{L=0}^{\infty} [cSin(2\sigma_L) + dCos(2\sigma_L)] P_L(x) ,$$

$$\operatorname{Im} A = \operatorname{Im} f_{c} + \frac{1}{2k} \sum_{L=0}^{\infty} [dSin(2\sigma_{L}) - cCos(2\sigma_{L})]P_{L}(x) ,$$

где

$$c = (L+1)\eta_{L}^{+}Cos(2\delta_{L}^{+}) + L\eta_{L}^{-}Cos(2\delta_{L}^{-}) - (2L+1)$$
$$d = (L+1)\eta_{L}^{+}Sin(2\delta_{L}^{+}) + L\eta_{L}^{-}Sin(2\delta_{L}^{-}) \quad .$$

Для полного сечения упругого рассеяния можно получить выражение [45]

,

$$\sigma_{s} = \frac{\pi}{k^{2}} \sum_{L} \left[(L+1) \left| 1 - S_{L}^{+} \right|^{2} + L \left| 1 - S_{L}^{-} \right|^{2} \right]$$
(8.4)

ИЛИ

$$\sigma_{\rm s} = \frac{4\pi}{k^2} \sum_{\rm L} \left\{ (L+1) [\eta_{\rm L}^+ Sin\delta_{\rm L}^+]^2 + L [\eta_{\rm L}^- Sin\delta_{\rm L}^-]^2 \right\} \ .$$

Эти выражения использовались далее для выполнения фазового анализа при энергии до 1.1 МэВ [154].

8.2 Контроль компьютерной программы

Текст нашей компьютерной программы для расчета полных и дифференциальных сечений упругого рассеяния частиц с полуцелым спином, которая использовалась для выполнения соответствующего фазового анализа, полностью приведен в последнем параграфе данной главы и протестирован на упругом рассеяние в р⁴Не системе.

Здесь мы приведем только один вариант контрольного счета по этой программе для р⁴Не рассеяния, в сравнении с данными из работы [155], где выполнен фазовый анализ для энергии 9.89 МэВ, получены положительные D - фазы и среднее по всем точкам значение $\chi^2 = 0.60$.

В анализе [155] использованы 22 точки по сечениям из работы [156] при энергии 9.954 МэВ (в [155] не указано, какие именно 22 точки были взяты из 24-х, приведенных в работе [156]) и несколько точек по поляризациям из работ [155,157]. В последнем случае, по-видимому, использовано 10 данных при 8-ми углах 46.5⁰, 55.9⁰, 56.2⁰, 73.5⁰, 89.7⁰, 99.8⁰, 114.3⁰, 128.3⁰ и энергиях 9.89, 9.84, 9.82 МэВ.

Фазы из работы [155] приведены в табл.8.1, а среднее χ^2_{σ} только для дифференциальных сечений по нашей программе с учетом 24 точек из [156] (энергия задавалась равной 9.954 МэВ) и с этими фазами получается равным 0.586. Результаты этих расчетов показаны в табл.8.2.

Для 10-ти экспериментальных данных из работ [155,157] по поляризациям при энергиях 9.82 ÷ 9.89 МэВ при восьми углах рассеяния с фазами из [155], можно получить χ^2_p =

0.589 (энергия, по-прежнему, задается равной 9.954 МэВ). Эти результаты приведены в табл.8.3.

Табл.8.1. Фазы упругого р⁴Не рассеяния из работы [155].

Е, МэВ	<i>S</i> ₀ , град	<i>P</i> _{3/2} , град	<i>P</i> _{1/2} , град	D _{5/2} , град	<i>D</i> _{3/2} , град
0.054	+2.0	112 4 +3.5	65 7 +2.7	5 ² +1.6	₂₇ +1.6
9.934	-1.8	-5.2	-3.2	-2.5	-2.8

Табл.8.2. Дифференциальные сечения p^4 Не рассеяния.

Здесь θ° – угол рассеяния в градусах, σ_{e} –

экспериментальные сечения, σ_t – расчетные сечения в барн.

θ°	σ _e , б	σ _t , б	χ^{2}_{i}	θ^0	σ _e , б	σ _t , б	χ^{2}_{i}
25.10	371.00	366.85	0.31	109.90	21.00	20.70	0.51
30.89	339.00	331.54	1.21	120.60	23.00	22.59	0.79
35.07	305.00	308.40	0.31	122.80	24.50	24.19	0.40
49.03	232.00	230.61	0.09	130.13	31.90	31.91	0.00
54.70	205.00	199.10	2.07	130.90	33.20	32.90	0.21
60.00	176.00	170.56	2.39	134.87	37.80	38.44	0.71
70.10	124.00	120.59	1.89	140.80	47.30	47.69	0.17
80.00	82.00	79.77	1.85	145.00	54.00	54.62	0.33
90.00	49.20	48.82	0.15	149.40	61.60	61.88	0.05
94.07	39.10	39.44	0.19	154.90	70.60	70.54	0.00
102.17	26.20	26.39	0.13	160.00	78.40	77.71	0.19
106.90	22.00	22.15	0.12	164.40	83.00	82.94	0.00

Табл.8.3. Поляризации в р⁴Не рассеянии.

Здесь θ° – угол рассеяния в градусах, P_{e} – экспериментальные поляризации, ΔP_{e} – экспериментальные ошибки для поляризаций и P_{t} – расчетные поляризации.

θ°	<i>P</i> _e , %	$\Delta P_{\rm e}$	$P_{\rm t}, \%$	χ^{2}_{i}
46.50	-32.30	2.10	-33.11	0.15
55.90	-41.30	2.20	-42.50	0.30
56.20	-44.40	0.90	-42.81	3.11

73.50	-62.60	3.00	-62.84	0.01
73.50	-64.80	1.90	-62.84	1.06
89.70	-76.10	3.60	-76.33	0.01
89.70	-75.50	2.40	-76.33	0.12
99.80	-59.30	2.50	-58.55	0.09
114.30	48.20	3.20	51.03	0.78
128.30	99.40	3.30	97.66	0.28

Дубовиченко С.Б. Термоядерные процессы Вселенной

Если усреднить χ^2 по всем точкам (24+10=34), т.е. использовать более общее выражение для χ^2

$$\chi^{2} = \frac{1}{(N_{\sigma} + N_{\rm P})} \left\{ \sum_{i=1}^{\rm N} \left[\frac{\sigma_{i}^{t} - \sigma_{i}^{e}}{\Delta \sigma_{i}^{e}} \right]^{2} + \sum_{i=1}^{\rm N} \left[\frac{P_{i}^{t} - P_{i}^{e}}{\Delta P_{i}^{e}} \right]^{2} \right\} = \frac{1}{(N_{\sigma} + N_{\rm P})} \left\{ \chi_{\sigma}^{2} + \chi_{\rm P}^{2} \right\}$$

$$(8.5)$$

то получается величина $\chi^2 = 0.5875 \approx 0.59$ в хорошем согласии с результатами работы [155]. Здесь N_{σ} и N_P – число данных по сечениям (24 точки) и поляризациям (10 точек), σ^e , P^e , σ^t , P^t – экспериментальные и теоретические значения сечений и поляризаций, $\Delta \sigma$ и ΔP – их ошибки.

Если выполнить дополнительную минимизацию χ^2 по нашей программе, то для χ^2_{σ} по сечениям получим 0.576, для поляризаций $\chi^2_{p} = 0.561$ и среднее $\chi^2 = 0.572 \approx 0.57$ при следующих значениях фаз

$$S_0 = 119.01^\circ$$
, $P_{3/2} = 112.25^\circ$, $P_{1/2} = 65.39^\circ$,
 $D_{5/2} = 5.24^\circ$, $D_{3/2} = 3.63^\circ$,

которые полностью ложатся в полосу ошибок, приведенных в работе [155] и показаны в табл.8.1.

Таким образом, написанная программа позволяет получить результаты, хорошо совпадающие с ранее выполненным анализом. Далее наша программа тестировалась по фазовому анализу, проведенному в других работах при низких энергиях, но уже непосредственно для p¹²C системы.

Ранее фазовый анализ функций возбуждения для упругого p¹²C рассеяния, измеренных в [158] при энергиях в области 400 ÷ 1300 кэВ (л.с.) и углах 106° ÷ 169°, был выполнен в работе [159], где получено, что, например, при $E_{lab} = 900$ кэВ S - фаза должна лежать в области 153° ÷ 154°. С теми же экспериментальными данными нами получено значение 152.7°. Для получения этого результата сечения рассеяния брались из функций возбуждения работы [159] при энергиях 866 ÷ 900 кэВ.

Результаты наших расчетов σ_i в сравнении с экспериментальными данными σ_e приведены в табл.8.4. В последнем столбце таблицы даны парциальные значения χ^2_i на каждую точку при 10% ошибках в экспериментальных сечениях, а для среднего по всем экспериментальным точкам χ^2 была получена величина 0.11.

θ°	σ _e , б	σ_t, σ	χ^2_i
106	341	341.5	1.90E-04
127	280	282.1	5.76E-03
148	241	251.2	1.80E-01
169	250	237.5	2.50E-01

Табл.8.4. Сравнение теоретических и экспериментальных сечений р¹²С упругого рассеяния при энергии 900 кэВ.

Таблица 8.5. Сравнение теоретических и экспериментальных сечений р¹²С упругого рассеяния при энергии 750 кэВ.

θ^0	σ, б	σ, б	χ^{2}_{i}
106	428	428.3	3.44E-05
127	334	342.8	6.91E-02
148	282	299.1	3.66E-01
169	307	279.9	7.82E-01

При энергии 751 кэВ (л.с.) в работе [159] для S - фазы

были найдены значения в интервале $155^{\circ} \div 157^{\circ}$. Результаты, полученные нами для этой энергии, приведены в табл.8.5. Данные по сечениям брались из функций возбуждения в диапазоне энергий 749 ÷ 754 кэВ и для *S* - фазы найдено 156.8° при среднем $\chi^2 = 0.30$.

Таким образом, по нашей программе, при двух энергиях упругого р¹²С рассеяния получены фазы, совпадающие с результатами анализа, выполненного на основе функций возбуждения в работе [159].

8.3 Фазовый анализ упругого р¹²С рассеяния

Приведенные выше контрольные результаты хорошо согласуются между собой, поэтому, по написанной нами программе, был выполнен фазовый анализ [89] новых экспериментальных данных по дифференциальным сечениям p¹²C рассеяния в диапазоне энергий 230 ÷ 1200 кэВ (л.с.) [27]. Результаты этого анализа приведены в табл.8.6 и представлены точками на рис.8.1 в сравнении с данными работы [159], которые показаны штриховой линией.

Табл.8.6. Результаты фазового анализа р¹²С упругого рассеяния при низких энергиях с учетом только *S* - фазы.

$E_{\rm cm}$, кэВ	<i>S</i> _{1/2} , град.	χ^2
213	2.0	1.35
317	2.5	0.31
371	7.2	0.51
409	36.2	0.98
422	58.2	3.69
434	107.8	0.78
478	153.3	2.56
689	156.3	2.79
900	153.6	2.55
1110	149.9	1.77

Рис.8.1. ²*S* - фаза р¹²С рассеяния при низких энергиях. Точки – результаты фазового анализа для *S* - фазы с учетом в фазовом анализе только *S* - волны, открытые квадраты – результаты фазового анализа для *S* - фазы с учетом *S* и *P* - волн, штриховая кривая – результаты из работы [159]. Другие кривые – расчеты с разными потенциалами.

На рис.8.2а,б,в точками представлены экспериментальные дифференциальные сечения в области резонанса при 457 кэВ (л.с.), результаты расчета этих сечений на основе формулы Резерфорда (точечная кривая), а также сечения, полученные из нашего фазового анализа (непрерывная линия), который учитывает только S - фазу. Из рисунков видно, что в области резонанса не удается хорошо описать сечение только на основе одной S - фазы.

Заметную роль начинает играть P - волна, представленная на рис.8.3, учет которой заметно улучшает описание экспериментальных данных. Штриховой линией на рис.8.2 показаны сечения при учете в фазовом анализе S - и P - волн. При резонансной энергии 457 кэВ (л.с.), сечения которой показа-

ны на рис.8.26, учет *P* - волны уменьшает величину χ^2 с 3.69 до 0.79.

Рис.8.2а,б,в. Дифференциальные сечения p¹²C рассеяния. Непрерывная кривая – фазовый анализ с учетом только *S* - волны, точечная кривая – резерфордовское рассеяние, пунктир – фазовый анализ с учетом *S* и *P* волн, точки – эксперимента [27].

На рис.8.3 видно, что при низких энергиях $P_{1/2}$ - фаза идет выше, чем $P_{3/2}$, но при энергии порядка 1,2 МэВ они пересекаются и далее $P_{3/2}$ идет выше в отрицательной области углов [160,161]. Величина *S* - фазы при учете *P* - волны практически не меняется и ее форма показана на рис.8.1 открытыми квадратами. Учет *D* - волны в фазовом анализе приводит к ее величине порядка одного градуса в области резонан-

са и практически не влияет на поведение расчетных дифференциальных сечений.

Полные сечения упругого рассеяния, полученные на основе выражения (8.4), представлены точками на рис.8.4. Они рассчитаны на основе извлеченных из экспериментальных дифференциальных сечений [27] *S* - фаз рассеяния. Открытые квадраты представляют полные сечения, полученные из фазового анализа работы [159].

Рис.8.3. ²*P* - фазы р¹²С рассеяния при низких энергиях. Точки – $P_{3/2}$ и квадраты – $P_{1/2}$ - фазы, полученные в результате фазового анализа с учетом *S* и *P* - волн.

На рис.8.4 в области энергий 200 ÷ 300 кэВ (л.с.) наблюдается некоторое плато в полных сечениях, а, следовательно, и в *S* - фазе рассеяния. В данный момент не понятно, вызвано оно экспериментальными неточностями, непредвиденными ошибками фазового анализа или действительно существует при этих энергиях. Для выяснения этого вопроса требуются новые измерения угловых распределений p¹²C рассеяния в области энергий от 100 ÷ 150 до 300 ÷ 350 кэВ с шагом по энергии порядка 50 кэВ или функций возбуждения при разных углах.

В заключение этого параграфа заметим, что в данном анализе использовалось несколько другое, чем обычно, значение $\hbar^2 / m_0 = 41.80159 \text{ МэВ} \cdot \Phi \text{м}^2$, которое было получено с более современными значениями констант.

8.4 Астрофизический S - фактор

Радиационный p^{12} С захват при низких энергиях входит в СNO термоядерный цикл и дает заметный вклад в энергетический выход термоядерных реакций во многих звездах на более поздней, чем pp - цикл, стадии их развития [57,121], о чем довольно подробно говорилось во введении. Поэтому перейдем сейчас к более подробному рассмотрению основных характеристик этой реакции при астрофизических энергиях.

Имеющиеся экспериментальные данные по астрофизическому S - фактору [33] показывают наличие узкого, с шириной около 32 кэВ, резонанса при энергии 0.422 МэВ (с.ц.м.), который приводит к подъему S - фактора на два - три порядка. Представляется интересным выяснить возможность описания резонансного поведения S - фактора этой реакции на основе потенциальной кластерной модели с запрещенными состояниями. Проведение таких расчетов оказывается возможным, т.к. в предыдущем параграфе был выполнен фазовый анализ новых экспериментальных данных [27] по дифференциальным сечениям упругого $p^{12}C$ рассеяния при астрофизических энергиях [89], который позволяет теперь построить потенциалы $p^{12}C$ взаимодействия по найденным фазам упругого рассеяния.

В настоящих исследованиях процесса радиационного $p^{12}C$ захвата учитывался E1(L) переход, который обусловлен орбитальной частью электрического оператора $Q_{JM}(L)$ [20, 24]. Сечения E2(L) и MJ(L) переходов и сечения, зависящие от спиновой части EJ(S), MJ(S), оказались на несколько порядков меньше. Электрический E1 переход в процессе $p^{12}C$

 $\rightarrow \gamma^{13}$ N захвата возможен между дублетными ${}^2S_{1/2}$ и ${}^2D_{3/2}$ - состояниями рассеяния и основным ${}^2P_{1/2}$ - связанным состоянием ядра 13 N в р 12 C канале. Поэтому нам потребуются потенциалы для парциальных волн, которые соответствуют этим состояниям.

Перед построением потенциалов взаимодействия по фазам упругого рассеяния, вначале рассмотрим классификацию орбитальных состояний по схемам Юнга для р¹²С системы. Напомним, что возможные орбитальные схемы Юнга в системе частиц можно определить, как прямое внешнее произведение орбитальных схем каждой подсистемы, что в данном случае дает {1} × {444} = {544} и {4441} [125,147]. Первая из них совместима только с орбитальным моментом L = 0 и является запрещенной, поскольку в s - оболочке не может находиться пять нуклонов. Вторая схема совместима с орбитальными моментами 1 и 3 [125], первый из которых соответствует основному связанному состоянию ядра 13 N с J = $1/2^{\circ}$. Таким образом, в потенциале ${}^{2}S$ - волны должно присутствовать запрещенное связанное состояние. а ${}^{2}P$ - волна имеет только разрешенное состояние при энергии -1.9435 МэВ [162].

Далее, для выполнения расчетов сечений фотоядерных процессов ядерная часть межкластерного потенциала p^{12} С взаимодействия представляется в обычном виде (2.8) с точечным кулоновским членом. Потенциал ${}^{2}S_{1/2}$ - волны строился так, чтобы правильно описать соответствующую парциальную фазу упругого рассеяния, которая имеет ярко выраженный резонанс при энергии 0.457 МэВ (л.с.). При использовании результатов фазового анализа [89], приведенного выше, был получен ${}^{2}S_{1/2}$ - потенциал p^{12} С взаимодействия с запрещенным состоянием при энергии $E_{f.s.} = -25.5$ МэВ.

Этот потенциал имеет параметры

 $V_{\rm S} = -67.75 \text{ M} \cdot \text{B}$, $\alpha_{\rm S} = 0.125 \ \Phi \text{m}^{-2}$,

а результаты расчета ${}^{2}S_{1/2}$ - фазы с таким потенциалом показаны на рис.8.1 непрерывной линией.

Потенциал связанного ${}^{2}P_{1/2}$ - состояния должен правильно воспроизводить энергию связи ядра 13 N в р 12 С канале -1.9435 МэВ [162] и разумно описывать его среднеквадратичный радиус. В результате были получены следующие параметры потенциала:

 $V_{\text{g.s.}} = -81.698725 \text{ M} \cdot 3B$, $\alpha_{\text{g.s.}} = 0.22 \Phi \text{M}^{-2}$. (8.6)

С ним получена энергия связи -1.943500 МэВ и среднеквадратичный зарядовый радиус $R = 2.54 \, \Phi$ м. Для радиусов протона и ядра ¹²С использованы величины: 0.8768(69) Фм [35] и 2.472(15) Фм [163]. Контроль поведения ВФ связанного состояния на больших расстояниях проводился по асимптотической константе C_W (2.10) с асимптотикой в виде функции Уиттекера [24], а ее величина на интервале 5 ÷ 20 Фм оказалась равна 1.96(1).

Результаты расчета *S* - фактора радиационного р¹²С захвата с полученными выше ${}^{2}P_{1/2}$ - и ${}^{2}S_{1/2}$ - потенциалами при энергиях от 20 кэВ до 1.0 МэВ приведены на рис.8.5 непрерывной линией в сравнении с экспериментальными данными из обзора [33] и работы [164]. При 25 кэВ для *S* - фактора получено значение 3.0 кэВ·б, а экстраполяция экспериментальных значений *S* - фактора к энергии 25 кэВ дает 1.45(20) кэВ·б и 1.54⁺¹⁵₋₁₀ кэВ·б [162].

Приведенный здесь вариант ${}^{2}S$ - потенциала далеко не единственный из возможных вариантов, способных описать резонансное поведение *S* - фазы при энергиях ниже 1 МэВ. Всегда можно найти другие комбинации потенциалов СС и рассеяния, которые приводят к близким результатам для ${}^{2}S_{1/2}$ - фазы и хорошо описывают величину и положение максимума *S* - фактора, например

 $V_{\text{g.s.}} = -65.8814815 \text{ M} \Rightarrow \text{B}$, $\alpha_{\text{g.s.}} = 0.17 \text{ } \Phi \text{M}^{-2}$, $R_{\text{ch}} = 2.58 \text{ } \Phi \text{M}$, $C_{\text{w}} = 2.30(1)$, $E_{\text{g.s.}} = -1.943500 \text{ } \text{M} \Rightarrow \text{B}$, $V_{\text{S}} = -55.15 \text{ } \text{M} \Rightarrow \text{B}$, $\alpha_{\text{S}} = 0.1 \text{ } \Phi \text{M}^{-2}$.

Существует определенное соответствие между парамет-

рами потенциала СС и рассеяния, которое возникает из требования описания резонансной S - фазы, энергии связи и величины резонанса в S - факторе. Увеличение ширины потенциалов рассеяния и СС приводит к более плавному спаду S фактора в обе стороны от резонанса. Например, величина S фактора приведенного выше потенциала при 25 кэВ равна 3.8 кэВ·б.

Рис.8.5. Астрофизический *S* - фактор радиационного р¹²С захвата при низких энергиях.

Экспериментальные данные, обозначенные ×, •, €, + и ∆, взяты из обзора [33]], треугольники из [164]. Кривые – расчеты с разными потенциалами.

Можно предложить другие комбинации потенциалов, но с более узким, чем в (8.6) потенциалом СС, например, со следующими параметрами:

 $V_{\text{g.s.}} = -121.788933 \text{ M} \oplus \text{B}$, $\alpha_{\text{g.s.}} = 0.35 \text{ } \Phi \text{M}^{-2}$, $R_{\text{ch}} = 2.49 \text{ } \Phi \text{M}$, $C_{\text{w}} = 1.50(1)$, $E_{\text{g.s.}} = -1.943500 \text{ } \text{M} \oplus \text{B}$,

$$V_{\rm S} = -102.05 \text{ M} \cdot \text{B}$$
, $\alpha_{\rm S} = 0.195 \, \Phi \text{M}^{-2}$. (8.7)

Эти потенциалы приводят к более резкому спаду S - фактора при энергиях вблизи резонанса. Фаза потенциала (8.7) и поведение соответствующего ему S - фактора показаны на рис.8.1 и 8.5 штрих - пунктирными линиями. Величина S - фактора для этой комбинации потенциалов при 25 кэВ равна 1.85 кэВ·б, что в целом согласуется с данными, приведенными в обзоре [162].

Приведенный ниже более узкий, чем (8.7), потенциал связанного состояния

$$V_{\text{g.s.}} = -144.492278 \text{ M} \Rightarrow \text{B}$$
, $\alpha_{\text{g.s.}} = 0.425 \text{ } \Phi \text{M}^{-2}$, $R_{\text{ch}} = 2.47 \text{ } \Phi \text{M}$,
 $C_{\text{w}} = 1.36(1)$, $E_{\text{g.s.}} = -1.943500 \text{ } \text{M} \Rightarrow \text{B}$, (8.8)

с тем же потенциалом $V_{\rm S}$ рассеяния (8.7) приводит к небольшому уменьшению *S* - фактора при резонансной энергии, как показано на рис.8.5 короткими штрихами, и дает *S*(25 кэВ) = 1.52 кэВ·б, что полностью согласуется с данными обзора [162].

Однако, как видно из приведенных выше результатов, с уменьшением ширины потенциалов СС уменьшается и асимптотическая константа, и зарядовый радиус ядра. Повидимому, потенциал (8.8) дает минимально допустимые значения этих параметров, совместимые с экспериментальными данными, например, по зарядовому радиусу. Известная величина зарядового радиуса ядра ¹³С составляет 2.46 Фм [162], что должно не очень отличаться от радиуса ¹³N, который β - переходом превращается в ¹³C. Таким образом, вариант (8.8) потенциала СС и потенциал (8.7) для состояний рассеяния приводят к наилучшему описанию *S* - фактора в рассматриваемой области энергий, описывая, при этом, и резонансную *S* - фазу упругого рассеяния.

Для дополнительного контроля вычисления энергии связи использовался вариационный метод с разложением В Φ по неортогональному вариационному гауссову базису [24], который на сетке с размерностью 10 при независимом варьировании параметров для первого варианта (8.6) потенциала СС позволил получить энергию -1.943498 МэВ. Асимптотическая константа C_w вариационной ВФ, параметры которой приведены в табл.8.7, на расстояниях 5 ÷ 20 Фм находится на уровне 1.97(2), а величина невязок не превышает 10⁻¹³ [24]. Зарядовый радиус не отличается от величины, полученной выше в конечно - разностных расчетах.

Табл.8.7. Вариационные параметры и коэффициенты разложения радиальной ВФ в р¹²С системе для первого варианта (8.6) потенциала СС.

i	β _i	$C_{ m i}$
1	4.310731038130567E-001	-2.059674967002619E-001
2	1.110252143696502E-002	-1.539976053334172E-004
3	4.617318488940146E-003	-2.292772895754105E-006
4	5.244199809745243E-002	-1.240687319547592E-002
5	2.431248255158095E-002	-1.909626327101099E-003
6	8.481652230536312 E-000	5.823965673819461E-003
7	1.121588023402944E-001	-5.725546189065398E-002
8	2.309223399000618E-001	-1.886468874357471E-001
9	2.297327380843046 E-000	1.244238759439573E-002
10	3.756772149743554 E+001	3.435757447077250E-003

Табл.8.8. Вариационные параметры и коэффициенты разложения радиальной ВФ в р¹²С системе для второго варианта (8.7) потенциала СС.

i	β _i	$C_{ m i}$
1	1.393662782203888E-002	3.536427343510346E-004
2	1.041704259743847E-001	3.075071412877344E-002
3	4.068236340341411E-001	3.364496084003433E-001
4	3.517787678267637E-002	4.039427231852849E-003
5	2.074448420678197E-001	1.284484754736406E-001
6	7.360025091178769E-001	2.785322894825304E-001
7	3.551046173695889E-000	-1.636661944722212E-002
8	1.5131407009411240E+001	-9.289494991217288E-003

Дубовиченко С.Б. Термоядерные процессы Вселенной

9	9.726024028584802E-001	-1.594107798542716E-002
10	6.634603967502104E-002	8.648073851532037E-003

Для варианта (8.7) потенциала СС вариационным методом получена такая же энергия связи -1.943498 МэВ с величиной невязок $3 \cdot 10^{-14}$, среднеквадратичным радиусом 2.49 Фм и асимптотической константой 1.50(2) в области 5 ÷ 17 Фм. Вариационные параметры и коэффициенты разложения для радиальной волновой функции этого потенциала приведены в табл.8.8.

Третий вариант (8.8) потенциала СС в вариационном методе приводит к энергии связи -1.943499 МэВ с величиной невязок $6 \cdot 10^{-14}$, таким же, как в КРМ расчетах, среднеквадратичным радиусом и асимптотической константой 1.36(2) в области 5 ÷ 17 Фм. Вариационные параметры радиальной волновой функции для этого потенциала приведены ниже в табл.8.9.

Табл.8.9. Вариационные параметры и коэффициенты разложения радиальной ВФ в р¹²С системе для третьего варианта (8.8) потенциала СС.

i	β _i	$C_{ m i}$
1	1.271482702554672E-002	2.219877609724907E-004
2	9.284155511162226E-002	2.240043561912315E-002
3	3.485413978134982E-001	2.407314126671507E-001
4	3.088717918378341E-002	2.494885124596691E-003
5	1.815363020074388E-001	8.792233462610707E-002
6	5.918532693855678E-001	3.652121068403727E-001
7	3.909887088341156E+000	-1.906081640167417E-002
8	1.635608081209650 E+001	-1.111922033874987E-002
9	9.358886757095011E-001	2.314583156796476E-001
10	5.673177540516311E-002	5.956470542991426E-003

Как мы уже не однократно говорили, вариационная энергия при увеличении размерности базиса уменьшается и дает верхний предел истинной энергии связи, а энергия из

конечно разностного метода при уменьшении величины шага и увеличении числа шагов увеличивается. Поэтому для реальной энергии связи в таких потенциалах можно принять среднюю, между получаемыми этими методами, величину -1.943499(1) МэВ. Таким образом, точность вычисления энергии связи находится на уровне не более ±1 эВ. Заметим, что во всех этих расчетах, полученных КРМ и ВМ, масса протона полагалась равной единице, ядра ¹²С равной 12, а $\hbar^2 / m_0 = 41.4686$ МэВ Фм².

Следует отметить, что во всех расчетах сечение, соответствующее электрическому *E*1 переходу из дублетного ${}^{2}D_{3/2}$ состояния рассеяния на основное ${}^{2}P_{1/2}$ - связанное состояние ядра 13 N, оказывается на 4 ÷ 5 порядков меньше, чем сечение перехода из ${}^{2}S_{1/2}$ состояния рассеяния. Так что основной вклад в расчетный *S* - фактор процесса р 12 C $\rightarrow {}^{13}$ N γ дает *E*1 переход из ${}^{2}S$ - волны рассеяния на основное состояние ядра 13 N.

В заключение этого параграфа нужно обратить внимание на тот интересный факт, что если для описания процессов рассеяния использовать мелкие потенциалы ${}^{2}S_{1/2}$ - волны, без запрещенного состояния, например, со следующими параметрами

$$V_{\rm S} = -15.87 \text{ M}_{\rm B} \text{ , } \alpha_{\rm S} = 0.1 \ \Phi \text{M}^{-2} \text{ ,} V_{\rm S} = -18.95 \text{ M}_{\rm B} \text{ , } \alpha_{\rm S} = 0.125 \ \Phi \text{M}^{-2} \text{ ,} V_{\rm S} = -21.91 \text{ M}_{\rm B} \text{ , } \alpha_{\rm S} = 0.15 \ \Phi \text{M}^{-2} \text{ ,}$$
(8.9)

то вообще не удается правильно передать величину максимума S - фактора радиационного захвата. Т.е. не удается описать абсолютную величину S - фактора, которая для любых вариантов потенциалов рассеяния (8.9) и СС оказывается выше экспериментального максимума в 2 ÷ 3 раза. Причем, для всех приведенных мелких потенциалов вида (8.9) вполне удается воспроизвести резонансное поведение ${}^{2}S_{1/2}$ - фазы рассеяния. При уменьшении ширины ${}^{2}S_{1/2}$ - потенциала, т.е. увеличении α , величина максимума S - фактора растет и, например, для последнего варианта ${}^{2}S_{1/2}$ - потенциала рассеяния из (8.9) превышает экспериментальное значение примерно в три раза.

Таким образом, на основе ПКМ и глубокого ${}^{2}S_{1/2}$ - потенциала с ЗС удается совместить описание астрофизического *S* - фактора и ${}^{2}S_{1/2}$ - фазы рассеяния в резонансной области энергий 0.457 МэВ (л.с.) и получить разумные значения для зарядового радиуса и асимптотической константы. В то же время, мелкие потенциалы рассеяния без ЗС не позволяют одновременно описать *S* - фактор и ${}^{2}S$ - фазу рассеяния при любых рассмотренных комбинациях р 12 С взаимодействий [134].

8.5 Программа для р¹²С фазового анализа

Приведем текст компьютерной программы для выполнений фазового анализа упругого $p^{12}C$ рассеяния на языке Fortran - 90 в системе PS - 4. Программа ищет фазы упругого рассеяния двух частиц по экспериментальным дифференциальным сечениям рассеяния, методами, описанными в [24] и выражениями (7.1÷7.2). Описание параметров, переменных, потенциалов взаимодействия, блоков программы и подпрограмм дано в распечатке программе.

PROGRAM FAZ_ANAL_p12C

! * Программа фазового анализа упругого p¹²C рассеяния * IMPLICIT REAL(8) (A-Z) INTEGER I,L,LMA,NI,NV,LMI,LH,LMII,LMAA,LHH,NTTT, NTT,NPP,NT,NTP CHARACTER(34) AA CHARACTER(33) BB CHARACTER(25) AC CHARACTER(24) BC CHARACTER(24) BC CHARACTER(3) NOM CHARACTER(6) EX,EX1 COMMON /A1/ SE(0:50),DS(0:50),DE(0:50),NT,POLE(0:50),POLED(0:50),DS1

```
(0:50).NTP.XIS.XIP.XI1
COMMON /A2/ NTTT,GG,SS,LMII,LMAA,LHH,NP
COMMON /A3/ POL(0:50).TT(0:100).REZ(0:50)
COMMON /A4/ LH.LMI.NTT.NPP
COMMON/A5/ PI
DIMENSION ST(0:50).FP(0:50).FM(0:50).XP(0:50)
PI=4.0D-000*DATAN(1.0D-000)
Z1=1.0D-000 ! Зарял Р
Z2=6.0D-000 ! Заряд <sup>12</sup>С
AM1=1.00727646577D-000; ! Macca P
AM2=12.0D-000; ! Macca <sup>12</sup>C
AM=AM1+AM2
A1=41.80159D-000
PM=AM1*AM2/AM
B1=2.0D-000*PM/A1
LMI=0: LH=1: LMA=0
! Минимальный LMI и максимальный LMA орбитальный
!момент
EP=1.0D-05; LMII=LMI; LHH=LH; LMAA=LMA
! EP - точность поиска минимума хи квадрат
NV=1; ! 1 - Проводить минимизацию, 0 - без минимизации
FH=0.0123D-000 ! Начальный шаг
NI=10 ! Число итераций
NP=2*LMA: NPP=NP
! ****************** Задание энергии в ц.м. *****************
ECM=0.422D-000 ! Энергия в ц.м.
NT=17: NTT=NT: NTTT=NT ! Число точек по углам
NOM='422'
EX='-1.TXT'; EX1='-R.DAT'
AC='G:\BASICA\FAZ-ANAL\p12C\c'
BC='G:\BASICA\FAZ-ANAL\p12C\'
AA=AC//NOM//EX
BB=BC//NOM//EX1
OPEN (1.FILE=AA)
DO L=1.NT
READ(1,*) TT(L),SE(L),DE(L)
SE(L)=SE(L)*1000.0D-000
```

```
DE(L)=SE(L)*0.10D-000
ENDDO
CLOSE(1)
OPEN (1,FILE="G:\BASICA\FAZ-ANAL\p12C\FAZ.DAT")
DO L=LMI.LMA.LH
READ(1,*) FP(L), FM(L)
ENDDO
CLOSE(1)
! ***** Перевод начальных фаз в радианы ***********
DO L=LMI,LMA,LH
FM(L)=FM(L)*PI/180.0D-000
FP(L)=FP(L)*PI/180.0D-000
ENDDO
FH=FH*PI/180.0D-000
DO I=LMI,LMA,LH
XP(I)=FP(I)
IF (I==LMA) GOTO 112
XP(I+LMA+LH)=FM(I+1)
112 ENDDO
EL=ECM*AM1/PM
SK=ECM*B1
SS=DSORT(SK)
GG=3.4495312D-002*Z1*Z2*PM/SS
CALL VAR(ST.FH.NI,XP.EP.XI,NV)
FM(0)=XP(0)
DO I=LMI.LMA.LH
FP(I)=XP(I)
IF (I==LMA) GOTO 111
FM(I+1)=XP(I+LMA+LH)
111 ENDDO
! ******** Печать результатов ***********************
PRINT *," EL, ECM, SK, SS=",EL,ECM,SK,SS
PRINT *
PRINT *."
               Т
                              SE
                                               ST
XI "
DO I=1,NT
PRINT *,TT(I),SE(I),ST(I),DS(I)
```

```
328
```

```
ENDDO
PRINT *
PRINT *,"
          XI=(XIS+XIP).XIS.XIP=".XI.XIS.XIP
PRINT *
PRINT *."
               L
                        FP
                                  FM"
DO L=LMI.LMA.LH
FM(L)=FM(L)*180.0D-000/PI
FP(L)=FP(L)*180.0D-000/PI
PRINT *.L.FP(L).FM(L)
ENDDO
OPEN (1.FILE=BB)
WRITE(1.*) " EL.ECM=".EL.ECM
WRITE(1,*) "XI=(XIS+XIP),XIS,XIP=",XI,XIS,XIP
WRITE(1.*) "
                                                    ST
                   Т
                                  SE
XI"
DO I=1.NT
WRITE(1,*) TT(I),SE(I),ST(I),DS(I)
ENDDO
WRITE(1.*) "
WRITE(1.*) "
                                     FM"
                 L
                         FP
DO I=LMI.LMA.LH
WRITE(1,*) I,FP(I),FM(I)
ENDDO
OPEN (1,FILE="G:\BASICA\FAZ-ANAL\p12C\FAZ.DAT")
DO I=LMI.LMA.LH
WRITE(1,*) FP(I),FM(I)
ENDDO
CLOSE(1)
END
SUBROUTINE VAR(ST, PHN, NI, XP, EP, AMIN, NV)
! Вариационная подпрограмма для минимизации хи квадрат
IMPLICIT REAL(8) (A-Z)
INTEGER I,NI,NT,NV,NP,LMI,LH,NN,IN,NTT,NTP
COMMON
                                                   /A1/
SE(0:50), DS(0:50), DE(0:50), NT, POLE(0:50), POLED(0:50), DS1
(0:50).NTP.XIS.XIP.XI1
COMMON /A3/ POL(0:50),TT(0:100),REZ(0:50)
COMMON /A4/ LH,LMI,NTT,NP
```

```
COMMON/A5/ PI
DIMENSION XPN(0:50), XP(0:50), ST(0:50)
DO I=LMI.NP.LH
XPN(I)=XP(I)
ENDDO
NN=LMI
PH=PHN
CALL DET(XPN,ST,ALA)
B=ALA
IF (NV==0) GOTO 3012
DO IIN=1.NI
NN=-LH
PRINT *, 'FF=', ALA, IIN
1119 NN=NN+LH
IN=0
2229 A=B
XPN(NN)=XPN(NN)+PH*XP(NN)
IN=IN+1
CALL DET(XPN,ST,ALA)
B=ALA
IF (B<A) GOTO 2229
C=A
XPN(NN)=XPN(NN)-PH*XP(NN)
IF (IN>1) GOTO 3339
PH=-PH
GOTO 5559
3339 IF (ABS((C-B)/(B))<EP) GOTO 4449
PH=PH/2.0D-000
5559 B=C
GOTO 2229
4449 PH=PHN
B=C
IF (NN<NP) GOTO 1119
AMIN=B
PH=PHN
ENDDO
3012 AMIN=B
DO I=LMI,NP,LH
```

XP(I)=XPN(I) ENDDO END SUBROUTINE DET(XP,ST,XI)

```
! ****** Подпрограмма вычисления хи квадрат ********
IMPLICIT REAL(8) (A-Z)
INTEGER I,NT,NTP
COMMON /A1/ SE(0:50),DS(0:50),DE(0:50),NT,POLE(0:50),
POLED(0:50),DS1(0:50),NTP,XIS,XIP,XI1
COMMON /A3/ POL(0:50).TT(0:100).REZ(0:50)
DIMENSION XP(0:50).ST(0:50)
S=0.0D-000
CALL SEC(XP,ST)
S1=0.0D-000
DO I=1.NT
DS(I) = ((ST(I) - SE(I))/DE(I))^{*2}
S=S+DS(I)
ENDDO
XI=S/NT
END
SUBROUTINE SEC(XP,S)
! *** Подпрограмма вычисления сечения рассеяния *******
IMPLICIT REAL(8) (A-Z)
INTEGER I,NT,LMI,LMA,LH,L
COMMON /A2/ NT.GG.SS.LMI.LMA.LH.NP
COMMON /A3/ POL(0:50),TT(0:100),REZ(0:50)
COMMON/A5/ PI
DIMENSION
S0(0:50),P(0:50),PP(0:50),FP(0:50),FM(0:50),XP(0:50),S(0:50)
DO I=LMI,LMA,LH
FP(I)=XP(I)
IF (I==LMA) GOTO 111
FM(I+1)=XP(I+LMA+LH)
111 ENDDO
FM(0) = FP(0)
CALL CULFAZ(GG.S0)
DO I=1,NT
T=TT(I)*PI/180.0D-000
```

X = DCOS(T)A=2.0D-000/(1.0D-000-X) S00=2.0D-000*S0(0)BB=-GG*A ALO=GG*DLOG(A)+S00 REC=BB*DCOS(ALO) AMC=BB*DSIN(ALO) REZ1=REC**2+AMC**2 REA=0.0D-000 AMA=0.0D-000 REB=0.0D-000 AMB=0.0D-000 DO L=LMI.LMA.LH FPP=2.0D-000*FP(L)FMP=2.0D-000*FM(L) AA=DCOS(FPP)-DCOS(FMP) BB=DSIN(FPP)-DSIN(FMP) SL=2.0D-000*S0(L) CALL FUNLEG(X.L.PP) REB=REB+(BB*DCOS(SL)+AA*DSIN(SL))*PP(L) AMB=AMB+(BB*DSIN(SL)-AA*DCOS(SL))*PP(L) LL=2*L+1JJ=L+1 AA=JJ*DCOS(FPP)+L*DCOS(FMP)-LL BB=JJ*DSIN(FPP)+L*DSIN(FMP) CALL POLLEG(X,L,P)REA=REA+(BB*DCOS(SL)+AA*DSIN(SL))*P(L)AMA=AMA+(BB*DSIN(SL)-AA*DCOS(SL))*P(L) **ENDDO** REA=REC+REA AMA=AMC+AMA RE=REA**2+AMA**2 AM=REB**2+AMB**2 S(I)=10.0D-000*(RE+AM)/4.0D-000/SS**2 REZ(I)=REZ1*10.0D-000/4.0D-000/SS**2 POL(I)=2.0D-000*(REB*AMA-REA*AMB)/(RE+AM) **ENDDO** END

SUBROUTINE POLLEG(X,L,P)

```
! **** Подпрограмма вычисления полиномов Лежандра ***
IMPLICIT REAL(8) (A-Z)
INTEGER I.L
DIMENSION P(0:50)
P(0)=1.0D-000; P(1)=X
DO I=2,L
P(I)=(2*I-1)*X/I*P(I-1)-(I-1)/I*P(I-2)
ENDDO
END
SUBROUTINE FUNLEG(X,L,P)
! *** Подпрограмма вычисления функций Лежандра ******
IMPLICIT REAL(8) (A-Z)
INTEGER I.L
DIMENSION P(0:50)
P(0)=0.0D-000;
              P(1)=DSORT(ABS(1,-X**2));
                                            P(2)=3.0D-
000*X*P(1)
IF (L \ge 3) THEN
DO I=2.L
P(I+1)=(2*I+1)*X/I*P(I)-(I+1)/I*P(I-1)
ENDDO
ENDIF
END
SUBROUTINE CULFAZ(G,F)
! *** Подпрограмма вычисления кулоновских фаз *******
IMPLICIT REAL(8) (A-Z)
INTEGER I.N
DIMENSION F(0:50)
C=0.5772156650D-000; S=0.0D-000; N=50
A1=1.202056903D-000/3.0D-000; A2=1.036927755D-000/5.0D-
000
DO I=1.N
A=G/I-DATAN(G/I)-(G/I)**3/3.0D-000+(G/I)**5/5.0D-000
S=S+A
ENDDO
FAZ=-C*G+A1*G**3-A2*G**5+S
F(0)=FAZ
DO I=1.20
```

F(I)=F(I-1)+DATAN(G/I) ENDDO END

Следующий контрольный счет по этой программе выполнен при резонансной энергии 422 кэВ (ц.м.) в p^{12} С упругом рассеянии с учетом в фазовом анализе одной только *S* волны

EL, ECM, SK, SS = 4.574E-1 4.22E-1 1.87E-2 1.37E-1

Т	SE	ST	XI
10.83	409561	3256822.3428083	4.194371298676935
21.63	266969	227766.5412064077	2.156278956304461
32.39	58583.1	50674.784355610	1.8223143351212
43.07	17267.6	15925.09271621951	6.044624704055184E-1
53.66	5839.94	5640.62956376928	1.164778401875084E-1
64.14	2414.18	2060.5610732571380	2.145515754644307
74.5	965.24	740.3435278409627	5.428685268597148
84.71	422.29	265.4550687576415	13.793167214162040
94.79	217.01	120.1919175449456	19.9046247867550
104.7	147.11	103.6791667064438	8.715893867706498
114.5	140.23	133.5569838776437	2.264448667637590E-1
124.15	204.09	175.8612452117759	1.913110216888019
133.67	243.52	216.8648984979974	1.198095428652019
143.08	253.77	251.4932553653157	8.049114108914179E-3
152.39	267.64	278.2186995788807	1.562293138659170E-1
161.64	288.94	296.9745596276764	7.732302205565983E-2
170.84	292.72	308.0225110939944	2.732880319244108E-1

 $XI = (XIS + XIP), XIS, XIP = 3.69 \quad 0.0E+0 \quad 0.0E+0$

L	FP	FM
0	58.15	58.15

В результате получаем значение *S* - фазы 58.15° при сравнительно большом значении $\chi^2 = 3.69$. Величины фаз и некоторые другие характеристики показаны в округленном, до второго знака после запятой, виде.

Дубовиченко С.Б. Термоядерные процессы Вселенной

Если в рассматриваемом рассеянии учитывать еще и *P* - волну, то для фаз рассеяния получим следующий контрольный счет:

EL, ECM, SK, SS = 4.57E-1 4.22E-1 1.87E-2 1.37E-1

Т	SE	ST	XI
10.83	4095610	3264781.541334357	4.115148756111661
21.63	266969	223190.0387772885	2.689114135211925
32.39	58583.1	49592.26685532391	2.355348513821907
43.07	17267.6	16111.41279780082	4.483243796400418E-1
53.66	5839.94	6059.579098437353	1.414498640631696E-1
64.14	2414.18	2415.589085838059	3.406713446204295E-5
74.5	965.24	982.7590318182862	3.294197102373393E-2
84.71	422.29	414.5062045985828	3.397513798561286E-2
94.79	217.01	205.28584114367	2.918797023030877E-1
104.71	147.11	149.1168415589131	1.860980323212324E-2
114.5	140.23	155.8558179281346	1.241662746301032
124.15	204.09	185.2840079884762	8.490808445689716E-1
133.67	243.52	219.3107960699812	9.883067178217969E-1
143.08	253.77	250.1596154521572	2.024073897229597E-2
152.39	267.64	274.7849530022851	7.126835104038670E-2
161.64	288.94	292.3439981186766	1.387916330759821E-2
170.84	292.72	302.7569167687375	1.175698198093965E-1

XI = (XIS + XIP), XIS, XIP = 7.90E-1 0.0E+0 0.0E+0

L	FP	FM
0	52.13	52.13
1	-8.97	12.82

Из этих результатов видно, что при учете в фазовом анализе P - волны рассеяния, величина χ^2 уменьшается с 3.69 до 0.79.

Если использовать для величины константы $\hbar^2 / m_0 = 41.80159 \,\text{МэВ} \cdot \Phi \text{M}^2$, обычное значение 41.4686 МэВ· ΦM^2 , то, как видно из приведенной ниже распечатки, величина χ^2 изменяется примерно на 10% а некоторые фазы на 0.5°, что практически не сказывается на результатах даже

при резонансной энергии

XI = (XIS + XIP), XIS, XIP = 8.85E-1 0.0E+0 0.0E+0

L	FP	FM
0	51.63	51.63
1	-9.40	12.87

Из приведенных результатов видно, что при 422 кэВ (ц.м.) фаза почти достигает своего резонансного значения в 90°.

При энергиях в области резонанса наблюдается настолько резкий подъем фазы, что изменение энергии примерно на 1 кэВ может привести к изменению фазы на $40^{\circ} \div 50^{\circ}$. Заметим, что точность определения энергии в используемом эксперименте составляет около 1 кэВ.