#### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

#### ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

#### КАФЕДРА ОБЩЕЙ ЯДЕРНОЙ ФИЗИКИ

# «Новые ядерно-физические данные для фотоядерного получения медицинских радионуклидов $^{166}$ Ho, $^{198,199}$ Au»

Выполнила студентка: 413 группа Качалова Д.И.

Научный руководитель: доцент, кандидат ф.-м. наук Кузнецов А.А.

Москва

2020

#### 1 Введение

Радиоизотопы широко используются в медицине для диагностики, терапии, а также для исследовательских целей. В настоящее время основу ядерной медицины составляет ограниченный круг радионуклидов. Для нескольких десятков радионуклидов, имеющих необходимые для ядерной медицины ядерно-физические характеристики, показана их перспективность для целей лечения и диагностики. Для большинства перспективных радионуклидов остаются открытыми вопросы о возможности получения в необходимых для доклинических и клинических испытаний количествах, оптимальных методах наработки и выделения из облучённых мишеней. Создание радиофармпрепаратов из перспективных радионуклидов ограничено наличием простых способов наработки.

Существуют различные методы наработки медицинских радионуклидов, каждый из которых позволяет получить радиоизотопы с принципиально разными характеристиками, определяющими их клиническую применимость [1].

Одним из таких способов является реакторный метод наработки. В этом случае медицинский радионуклид является продуктом реакции деления. Так, в частности, нарабатывают медицинский изотоп <sup>99</sup>Мо:

$$n + {}^{235}\text{U} \rightarrow {}^{236}U^* \rightarrow {}^{135}\text{Sn} + {}^{99}\text{Mo} + 2n$$

В качестве альтернативы, мишени из нужных материалов могут размещаться вокруг реактора для облучения нейтронами деления и получения желаемого радиоактивного продукта. Нейтронная активация может привести к двум типам реакции:

- (n, γ) в этом случае продукт реакции и ядра мишени являются изотопами одного и того же элемента и требуют разделения изотопов
- (n, p) продукт реакции и мишень разные элементы

Радионуклиды, получаемые на реакторах,  $\beta^-$ -радиоактивны, так как получаются в результате нейтронной активации, а, следовательно, являются нейтронно-избыточными.  $\beta^+$ -радиоактивные изотопы на ядерных реакторах получить невозможно.

Медицинские радиоизотопы также получают на циклотронах. При данном методе получения налетающей частицей обычно является протон, дейтрон или  $\alpha$ -частица, ускоренные до высоких энергий (10 – 100 МэВ). Радионуклиды, произведенные на циклотронах, протонно - избыточные и, следовательно, распадаются посредством  $\beta^+$ -излучения или *е*-захвата. Возможности наработки медицинских радионуклидов на циклотронах ограничены размерами мишеней и интенсивностью пучков, а также необходимостью применять уникальные установки.

В последнее время активно исследуется метод получения медицинских изотопов на ускорителях электронов, в основе которого лежат фотоядерные реакции. Особенно ярко

этот метод проявляет себя в случае, когда ни на циклотронах, ни на реакторах невозможно получить нужный изотоп. Однако, как и любой метод, он имеет свои преимущества и недостатки. Основным преимуществом фотоядерного метода является его относительная доступность. Например, по сравнению с наработкой медицинских изотопов на циклотронах, линейные ускорители электронов или микротроны для фотоядерного получения радионуклидов намного дешевле и могут быть размещены непосредственно в больнице в силу своих относительно небольших размеров.

Для оценки возможности наработки медицинских изотопов фотоядерным методом необходимо решить следующие задачи:

- Определить возможную нарабатываемую активность целевого нуклида.
- Определить возможную нарабатываемую активность побочных продуктов.
- Подобрать параметры мишени и режим облучения так, чтобы нарабатывалось как можно меньше побочных продуктов (изотопов того же химического элемента, что и целевой нуклид). Чтобы избежать этого, нужно облучать обогащенные мишени вместо мишеней естественного изотопного состава и подбирать максимальную энергию электронов ускорителя в соответствии с порогами реакций, в результате которых образуются сложно отделяемые изотопы.
- Основным требованием при наработке медицинских изотопов является получение целевого нуклида без носителя, т.е. без большого количества стабильных изотопов того же химического элемкнта, что и целевой нуклид. Поэтому из всех возможных фотоядерных реакций используются либо фотопротонные реакции (γ, p) либо фотонейтронные с последующим β-распадом на целевой нуклид. В нашей работе предлагается исследовать образование нуклидов <sup>166</sup>Но и <sup>198,199</sup>Аи в результате фотояпротонных реакций на изотопах Ег и Hg.
- В эксперименте зачастую невозможно определить количественные характеристики всех возможных реакций происходящих в образце, кроме этого для подбора оптимальной энергии облучения также нужно иметь информацию о сечениях всех возможных реакций. В базах ядерных данных практически (EXFOR) отсутствуют сечения фотоядерных реакций на исследуемых изотопах Hg и Er, что делает невозможным экспериментальную оценку наработки изотопов <sup>166</sup>Ho и <sup>198,199</sup>Au на основе экспериментальных сечений. Использование теоретических сечений тоже может быть ограничено. В многочисленных экспериментах на тормозных пучках показано, что теоретические сечения фотопротонных реакций могут значительно отличаться от экспериментальных от нескольких раз до двух порядков. Поэтому важной задачей является на вопрос о применимости различных теоретических подходов к расчетам сечений фотоядерных реакций, сравнения экспериментальных ных данных и теоретических расчетов.
- Также необходимо выполнить сравнениие с альтернативными путями наработки.

В настоящей работе выполнено исследование возможности наработки перспективных для ядерной медицины радионуклидов <sup>166</sup>Ho, <sup>198,199</sup>Au. Для этого был выполнен эксперимент по облучению естественный смесей изотопов эрбия и ртути на тормозном пучке микротрона РМ55 НИИЯФ МГУ, определены выходы, сечения на эквивалентный квант и активности целевых и побочных нуклидов, образующихся в результате облучения. Выполнено сравнение с теоретическими расчетами на основе комбинированной модели фотоядерных реакций.

#### 1.1 <sup>166</sup>Ho

| Изотоп            | $T_{1/2}$ | Тип распада (%) | $E_{\gamma} \; (I_{\gamma},  \%),  \kappa$ эВ | $E_{\gamma}^{max}~(I_{\gamma},~\%),$ кэ ${ m B}$ |
|-------------------|-----------|-----------------|-----------------------------------------------|--------------------------------------------------|
| <sup>166</sup> Ho | 26.83 ч.  | $\beta^{-}$     | 80.57 (6.71), 1379.40 (0.93)                  | $1830.49 \ (0.0085)$                             |

Таблица 1: Основные характеристики изотопа <sup>166</sup>Но

Для диагностики сердечно-сосудистых заболеваний и визуализации метаболических процессов в миокарде используется радионуклид <sup>188</sup>Re, который может быть получен с помощью генератора <sup>188</sup>We/<sup>188</sup>Re. В свою очередь производство <sup>188</sup>We требует больших потоков нейтронов и обогащенных мишеней из вольфрама, чтобы получать данный радионуклид в количествах, необходимых для медицинских целей. Схожие радионуклидные свойства <sup>166</sup>Ho и <sup>188</sup>Re, а также существование более простого способо наработки делает данный изотоп привлекательной альтернативой <sup>188</sup>Re при использовании для внутрисосудистой лучевой терапии [2]. Также <sup>166</sup>Ho используется для планирования лечения при применении радиоэмболизации — эффективного метода лечения злокачественных новообразований, основанного на уничтожении раковых клеток с помощью радиоактивных микросфер, доставленных к опухоли по артериальным сосудам [3]. По совокупности своих ядерно-физических свойств <sup>166</sup>Ho является перспективным для применения в медицине в качестве терапевтического.

<sup>166</sup>Но обычно получают в реакторе путем облучения тепловыми нейтронами <sup>165</sup>Но (100 % в природной смеси). Однако сечение захвата <sup>165</sup>Но невелико (61.2 барн), поэтому таким способом невозможно получить радионуклид с высокой удельной активностью. Без носителя <sup>166</sup>Но можно получить при облучении тепловыми нейтронам мишени из <sup>164</sup>Dy в результате реакции последовательного захвата 2-х нейтронов и последующего  $\beta$ -распада: <sup>164</sup>Dy( $2n, \gamma$ )<sup>166</sup>Dy  $\stackrel{\beta^-}{\longrightarrow}$ <sup>166</sup>Ho [4]. В высокопоточных реакторах можно достичь активности <sup>164</sup>Dy около 5 Ки/мг. Однако число таких реакторов невелико.

Фотоядерным методом <sup>166</sup>Но может быть получен при облучении пучком тормозных  $\gamma$ -квантов мишени из эрбия естественного изотопного состава в результате реакций <sup>170</sup>Er $(\gamma, 1p3n)^{166}$ Ho, <sup>168</sup>Er $(\gamma, 1p1n)^{166}$ Ho, <sup>167</sup>Er $(\gamma, 1p)^{166}$ Ho (Рис. 1).

| Er159<br><sup>36 м</sup> | Er160<br>28.58 ч | Er161<br>3.21 ч | Er162<br>0.139  | Er163<br>75.0 м | Er164<br>1.601  | Ег165<br>10.36 ч            | Er166<br>33.503 | Er167<br>22.869   | Er168<br>26.978  | Er169<br>9.392 дн | Er170<br>14.910 | Er171<br>7.516 ч |
|--------------------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------------------|-----------------|-------------------|------------------|-------------------|-----------------|------------------|
| 3/2 -                    | 0+               | 3/2-            | 0+              | 5/2 -           | 0+              | 5/2 -                       | 0+              | 7/2+              | 0+               | 1/2-              | 0+              | 5/2 -            |
|                          |                  | m               |                 |                 |                 |                             |                 | т                 |                  |                   |                 |                  |
| Но158<br>11.3 м          | Но159<br>33.05 м | Но160<br>25.6 м | Но161<br>2.48 ч | Но162<br>15.0 м | Но163<br>4570 л | Но <mark>164</mark><br>29 м | Ho165           | Но166<br>26.824 ч | Но167<br>3.003 ч | Но168<br>2.99 м   | Но169<br>4.72 м | Но170<br>2.76 м  |
| 5+                       | 7/2-             | 5+              | 7/2-            | 1+              | 7/2-            | 1+                          | 7/2-            | 0-                | 7/2-             | 3+                | 7/2-            | (6+)             |
| m                        | m                | m               | m               | m               | m               | m                           |                 | m                 |                  | m                 |                 | m                |

Рис. 1: Часть N-Z диаграммы атомных ядер в области стабильных изотопов эрбия и гольмия.

Были проведены эксперименты по облучению мишеней из эрбия пучком тормозных фотонов. В работе [5] тормозное излучение было получено с использованием медицинского линейного ускорителя электронов. В результате эксперимента получен и расшифрован спектр остаточной активности продуктов фотоядерных реакций на изотопах эрбия. Расчетов выходов и активностей в данной работе не приведено.

#### 1.2 <sup>198,199</sup>Au

Таблица 2: Основные характеристики изотопов <sup>198</sup>Au и <sup>199</sup>Au

| Изотоп            | $T_{1/2}$ | Тип распада (%)  | $E_{\gamma}~(I_{\gamma},~\%),$ кэВ | $E_{\gamma}^{max}$ $(I_{\gamma}, \%),$ кэВ |
|-------------------|-----------|------------------|------------------------------------|--------------------------------------------|
| <sup>198</sup> Au | 2.70 дн.  | $\beta^{-}(100)$ | 411.80 (96)                        | $1087.68 \ (0.159)$                        |
| <sup>199</sup> Au | 3.14 дн.  | $\beta^{-}(100)$ | 158.38 (40), 208.21 (8.7)          | 208.21 (8.732)                             |

Радиоизотопы золота <sup>198</sup>Au и <sup>199</sup>Au в течение многих лет рассматриваются в ядерной медицине как перспективная тераностическая пара [6–8], то есть могут быть использованы и для диагностики и для лечения онкологических заболеваний. Например, для <sup>199</sup>Au средняя энергия испускаемой  $\beta$ -частицы составляет 84 кэВ, электроны с такой энергией имеет среднюю длину свободного пробега в тканях примерно 100 мкм, что делает этот радионуклид идеальным для доставки энергии в небольшие объемы, включая микрометастатазы и опухолевые клетки вблизи поверхности органов и поэтому <sup>199</sup>Au хорошо подходит для радиоиммунотерапии [9]. <sup>198</sup>Au используется в радиотерапии различных видов рака. С появлением в медицине нанотехнологий, <sup>198</sup>Au применяется в качестве наночастиц золота в коллоидных формах для разработки радиофармацевтических препаратов [10]. В последнее время наноструктуры, меченные <sup>198</sup>Au или <sup>199</sup>Au, были изучены для визуализации онкологических заболеваний in vivo [11].

Радионуклиды <sup>198,199</sup>Au получают как в ядерных реакторах [12], так и на ускорителях заряженных частиц [13, 14]. Наработка данных изотопов в ядерных реакторах осуществляется в результате реакций <sup>198</sup>Pt $(n, \gamma)^{199}$ Pt  $\xrightarrow{\beta^-}$ <sup>199</sup>Au и <sup>197</sup>Au $(n, \gamma)^{198}$ Au, что требует дорогих мишеней из золота или платины. Также необходимо отделить радинуклиды <sup>198,199</sup>Au от облученной мишени. Существуют два основных метода химического разделения: жидкостная экстракция (LLX) и ион-обменное разделение, оба метода широко используются. В работах по получению радионуклидов <sup>198,199</sup>Au на ускорителях используются различные налетающие частицы, например, в работе [14] данные радионуклиды получали на циклотроне при облучении мишени пучком дейтронов с энергией 50 МэВ.

Фотоядерный метод позволяет нарабатывать радиоизотопы <sup>198,199</sup>Au в результате реакций <sup>204</sup>Hg( $\gamma$ , 1*p*4*n*)<sup>199</sup>Au, <sup>202</sup>Hg( $\gamma$ , 1*p*2*n*)<sup>199</sup>Au, <sup>201</sup>Hg( $\gamma$ , 1*n*1*p*)<sup>199</sup>Au, <sup>200</sup>Hg( $\gamma$ , 1*p*)<sup>199</sup>Au, <sup>204</sup>Hg( $\gamma$ , 1*p*5*n*)<sup>198</sup>Au, <sup>202</sup>Hg( $\gamma$ , 1*p*3*n*)<sup>198</sup>Au, <sup>201</sup>Hg( $\gamma$ , 1*p*2*n*)<sup>198</sup>Au, <sup>200</sup>Hg( $\gamma$ , 1*p*1*n*)<sup>198</sup>Au, <sup>199</sup>Hg( $\gamma$ , 1*p*)<sup>198</sup>Au (Рис. 2).

| Н <b>д193</b><br>3.80 ч | Нg194<br>444 л   | <b>Hg195</b><br>10.53 ч | Hg196<br>0.15       | Hg197<br>64.14 ч                            | Hg198<br>9.97 | Hg199<br>16.87      | Hg200<br>23.10           | Hg201<br>13.18  | Hg202<br>29.86  | <b>Hg203</b><br>46.594 дн | Hg204<br>6.87 | Hg205<br>5.14 м |
|-------------------------|------------------|-------------------------|---------------------|---------------------------------------------|---------------|---------------------|--------------------------|-----------------|-----------------|---------------------------|---------------|-----------------|
| 3/2(-)                  | 0+               | 1/2-                    | 0+                  | 1/2-                                        | 0+            | 1/2-                | 0+                       | 3/2-            | 0+              | 5/2 -                     | 0+            | 1/2-            |
| m                       |                  | m                       |                     | m                                           |               | m                   |                          |                 |                 |                           |               |                 |
| Au192<br>4.94 ч         | Аu193<br>17.65 ч | Au194<br>38.02 ч        | Ац195<br>186.098 дн | <mark>Au196</mark><br>6.166 <sup>9</sup> дн | Au197<br>100  | Au198<br>2.69517 дн | <b>Au199</b><br>3.139 дн | Аu200<br>48.4 м | Ац201<br>26.0 м | Au202<br>28.4 c           | Au203<br>60 c | Au204<br>39.8 c |
| 1-                      | 3/2+             | 1-                      | 3/2+                | 2-                                          | 3/2+          | 2-                  | 3/2+                     | (1-)            | 3/2+            | (1-)                      | 3/2+          | (2-)            |
| m                       | m                | m                       | m                   | m                                           | m             | m                   | m                        | m               |                 |                           |               |                 |

Рис. 2: Часть N-Z диаграммы атомных ядер в области стабильных изотопов ртути и золота.

Существует несколько работ, посвященных изучению фотоядерных реакций на изотопах ртути. В работе [15] получены относительные выходы фотонейтронных и фотопротонных реакций при облучении мишени из ртути естественного изотопного состава пучком тормозных фотонов с максимальной энергией 19.5 МэВ и 29.1 МэВ, нормированные на выход реакции <sup>196</sup>Hg( $\gamma$ , n)<sup>195</sup>Hg. Результаты эксперимента сравниваются с теоретическими расчетами по модели [16, 17]. В работе [18] приведены значения сечений на эквивалентный квант для реакций <sup>204</sup>Hg( $\gamma$ , n)<sup>203</sup>Hg, <sup>199</sup>Hg( $\gamma$ , p)<sup>198</sup>Au, <sup>198</sup>Hg( $\gamma$ , n)<sup>197g</sup>Hg и <sup>198</sup>Hg( $\gamma$ , n)<sup>197m</sup>Hg при максимальной энергии электронов ускорителя 30, 40, 50, 60 и 68 МэВ.

# 2 Методика проведения эксперимента и обработки данных

Все эксперименты по получению выбранных медицинских радионуклидов фотоядерным методом были выполнены на тормозном пучке разрезного микротроне РТМ55 НИ-ИЯФ МГУ при энергии электронов 55 МэВ.

На пути пучка электронов ставится мишень из вольфрама, толщиной 0.2 мм, для получения тормозного излучения. За тормозной мишенью помещается алюминиевый



Рис. 3: Схема проведения эксперимента.

поглотитель для остановки электронов, прошедших через тормозную мишень. Далее пучок γ-квантов попадает на исследуемую мишень. При облучении мишени происходят фотоядерные реакции, продуктами которых являются радиоактивные ядра. Их распад сопровождается излучением, энергетический спектр этого вторичного γ-излучения дискретен и уникален для каждого изотопа, что позволяет найти и идентифицировать конкретные изотопы в спектре остаточного γ-излучения, зарегистрированного детектором. После облучения мишень перемещается в специальное низкофоновое помещение, где на детекторе из сверхчистого германия (HPGe) проводится измерение спектров остаточной активности изотопов, образовавшихся в облученной мишени. В эксперименте по получению <sup>166</sup>Но облучаемая мишень представляла собой порошок оксида эрбия, насыпанный и уплотненный в полистироловый контейнер радиусом 8 мм и толщиной 2.8 мм. При облучении ртути использовался аналогичный контейнер, в который была залита и загерметизирована ртуть естественного изотопного состава. Параметры облучений и измерений мишеней из эрбия и ртути приведены в таблице 3.

Таблица 3: Параметры облучения и измерений мишеней из  $^{nat}$ Er и  $^{nat}$ Hg, l – толщина мишени,  $t_{obn.}$  – время облучения,  $I_{cp.}$  – средний ток во время облучения,  $t_{изм.}$  – общее время измерения спектров.

| Мишень            | $l, r/cm^2$ | $t_{\text{обл.}}$ | $I_{\rm cp.}$ | <i>t</i> <sub>изм.</sub> |  |
|-------------------|-------------|-------------------|---------------|--------------------------|--|
| <sup>nat</sup> Er | 0.268       | 3908 с.           | 0.28 мкА      | 5 дн.                    |  |
| <sup>nat</sup> Hg | 3.80        | 667 с.            | не измерялся  | 16 дн.                   |  |

На основе анализа спектров остаточной активности были измерены выходы фотоядерных реакций на природной смеси изотопов эрбия и ртути. На рис. 4 показан спектр остаточной активности облучённой мишени из оксида эрбия через 20 часов после окончания облучения, время измерения спектра 7 часов. В таблице 4 приведены периоды полураспада образующихся изотопов и энергии максимумов в спектре, по которым идентифицировались различные каналы распада ГДР. Спектр остаточной активности облученной мишени и ртути через 36 часов после окончания облучения показан на рис. 5, время измерения спектра - 15 часов. Периоды полураспада и энергии  $\gamma$ -квантов радиоактивных изотопов, образующихся в результате фотоядерных реакций на ртути приведены в таблице 5.

Таблица 4: Периоды полураспада  $T_{1/2}$  изотопов <sup>167,166,162*m*</sup>Ho, <sup>169,163,161</sup>Er,  $E_{\gamma}$  - энергии максимумов в спектре остаточной активности,  $I_{\gamma}$  — квантовые выходы соответствующих  $\gamma$ -квантов,  $Y_{\rm эксп.}(55{\rm M}$ эв) — экспериментальные выходы образования соответствующих изотопов

| Иротоп            | T .       | $E_{\rm TC} \mathbf{B} \left( I \right) $   | $Y_{ m эксп.}(55 { m M}  m { m sB}),$ | $Y_{ m эксп.}(55 { m M}  m { m B}),$ |  |
|-------------------|-----------|---------------------------------------------|---------------------------------------|--------------------------------------|--|
| 11301011          | $I_{1/2}$ | $E_{\gamma}, \text{ K3D } (I_{\gamma}, 70)$ | 1/e                                   | Бк/(мкА ч г/см <sup>2</sup> )        |  |
| <sup>167</sup> Ho | 3.1 ч.    | 321.2 (23.5)                                | $(5.61 \pm 1.50) \cdot 10^{-8}$       | $(2.77 \pm 0.74) \cdot 10^5$         |  |
| <sup>166</sup> Ho | 26.8 ч.   | $80.57 \ (6.71), \ 1379.4 \ (0.93)$         | $(6.05 \pm 0.37) \cdot 10^{-8}$       | $(3.60 \pm 0.22) \cdot 10^4$         |  |
| 162mTT            | 67.0 мин. | 185.0 (28.6), 282.86 (11.3),                | $(8.71 \pm 2.26) 10^{-10}$            | $(1.25 \pm 0.32) \cdot 10^4$         |  |
| 110               |           | 1220.0(22.5)                                | $(0.71 \pm 2.20)^{10}$                |                                      |  |
| <sup>169</sup> Er | 9.4 д.    | $109.78\ (0.0013)$                          | $(3.89 \pm 0.90) \cdot 10^{-6}$       | $(2.77 \pm 0.64) \cdot 10^5$         |  |
| 163Fr             | 75 0 MIII | $436.1 \ (0.0285), \ 439.94 \ (0.0276),$    | $(0.42 \pm 2.77).10^{-7}$             | $(1.21 \pm 0.35) \cdot 10^7$         |  |
| EI                | 7Э.0 МИН. | 1113.5 (0.049)                              | $(9.42 \pm 2.11) \cdot 10$            | $(1.21 \pm 0.55) \cdot 10^{\circ}$   |  |
| <sup>161</sup> Er | 3.21 ч.   | 211.15 (12.2), 314.77 (2.49),               | $(4.62 \pm 0.38), 10^{-8}$            | $(2.82 \pm 0.23) \cdot 10^5$         |  |
|                   |           | 826.6 (64)                                  | $(4.02 \pm 0.30)$ ·10                 | $(2.02 \pm 0.23) \cdot 10$           |  |

В результате эксперимента измерялись выходы  $Y(E^m)_{\text{эксп.}}$  фотоядерных реакций представляющие собой свертку сечения фотоядерной реакции  $\sigma(E_{\gamma})$  с плотностью распределения числа тормозных фотонов по энергии на один электрон пучка ускорителя  $W(E_{\gamma}, E^m)$ :

$$Y(E^m)_{\mathfrak{s}_{\mathrm{KCII.}}} = \alpha \eta \int_{E_{\mathrm{nop.}}}^{E_m} W(E, E^m) \sigma(E) dE, \qquad (1)$$

где  $E^m = 55$  МэВ — кинетическая энергия электронов, падающих на вольфрамовый радиатор, E — энергия тормозных  $\gamma$ -квантов, образующихся на радиаторе,  $E_{\text{пор.}}$  — порог исследуемой фотоядерной реакции,  $\alpha$  — количество исследуемых ядер, отнесенное к 1 см<sup>2</sup> мишени,  $\eta$  — процентное содержание исследуемого изотопа в природной смеси

изотопов.

В случае измерения выхода на природной смеси изотопов, результатом является выход образования изотопа в результате всех возможных реакций на природной смеси:

$$Y(E^m)_{\mathsf{эксп.}} = \alpha \sum_i \eta_i \int_{E_i \text{ nop.}}^{E_m} W(E, E^m) \sigma_i(E) dE, \qquad (2)$$

где индекс *i* соответствует номеру реакции, дающей вклад в образование исследуемого изотопа.

Таблица 5: Периоды полураспада  $T_{1/2}$  изотопов <sup>195g,m,197g,m,203</sup>Hg и <sup>199,198,196</sup>Au,  $E_{\gamma}$  - энергии максимумов в спектре остаточной активности,  $I_{\gamma}$  — квантовые выходы соответствующих  $\gamma$ -квантов,  $Y_{\text{отн.}}(55\text{M}\Rightarrow\text{B})$  — относительные выходы образования соответствующих изотопов, нормированные на выход реакции  $\text{Hg}^{204}(\gamma, n)\text{Hg}^{203}$ ,  $Y_{\text{эксп.}}(55\text{M}\Rightarrow\text{B})$  — экспериментальные выходы образования соответствующих изотопов

| Иротон             | $T_{-1}$   | $E \to B (I \%)$                            | $Y_{\text{отн.}}(55 \text{МэВ}),$ | $Y_{ m эксп.}(55 { m M}  m { m sB}),$ |
|--------------------|------------|---------------------------------------------|-----------------------------------|---------------------------------------|
| Изотоп             | 11/2       | $E_{\gamma}, \text{ K9D } (I_{\gamma}, 70)$ | отн. ед.                          | Бк/(мкА ч г/см <sup>2</sup> )         |
| <sup>203</sup> Hg  | 46.612 дн. | 279.2 (81)                                  | $1.00 \pm 0.01$                   | $(4.52 \pm 0.45) \cdot 10^4$          |
| <sup>199m</sup> Hg | 42.6 м     | 158.38(52), 374.1(13.8)                     | $(3.20 \pm 0.02) \cdot 10^{-1}$   | $(2.28 \pm 0.01) \cdot 10^7$          |
| <sup>197</sup> Hg  | 64.14 ч.   | 77.35(18.7), 191.44(0.632)                  | $2.09 \pm 0.01$                   | $(1.65 \pm 0.01) \cdot 10^6$          |
|                    | 9.9 ч.     | 61.46 (6.2), 180.11 (1.9),                  |                                   |                                       |
|                    |            | 207.1 (1.57), 261.75 (1.5),                 |                                   | $(4.40 \pm 0.20) \cdot 10^5$          |
| <sup>195</sup> Hg  |            | 585.13(1.99), 599.66(1.78),                 | $(8.62 \pm 0.04) \cdot 10^{-2}$   |                                       |
|                    |            | 779.8 (7), 1111.04 (1.44),                  |                                   |                                       |
|                    |            | 1172.38(1.24)                               |                                   |                                       |
| <sup>199</sup> Au  | 3.139 дн.  | 158.38 (40), 208.21 (8.732)                 | $(2.74 \pm 0.21) \cdot 10^{-2}$   | $(1.84 \pm 0.14) \cdot 10^4$          |
| <sup>198</sup> Au  | 2.695 дн.  | 411.80 (96)                                 | $(2.24 \pm 0.02) \cdot 10^{-2}$   | $(1.75 \pm 0.02) \cdot 10^4$          |
| <sup>196</sup> Au  | 6.183 дн.  | 332.98 (22.9), 355.68 (87)                  | $(4.61 \pm 0.07) \cdot 10^{-3}$   | $(1.57 \pm 0.03) \cdot 10^3$          |

Экспериментальные выходы реакций  $Y(E^m)_{3\kappa cn.}$  рассчитывались по площадям фотопиков S в спектрах остаточной активности с учетом мертвого времени детектора, тока ускорителя во время облучения и нескольких каналов распада, приводящих к образованию конечных ядер, образующихся в результате фотоядерных реакций

$$Y = \frac{N_0 e^{\lambda t_1}}{\int\limits_0^{t_1} I(t) e^{\lambda t} dt}$$
(3)

где N<sub>0</sub> - число ядер исследуемого изотопа на момент окончания облучения, которое

определяется на основе соотношения:

$$N_0 = \frac{S}{I_{\rm g}\varepsilon(e^{-\lambda t_2} - e^{-\lambda t_3})}\tag{4}$$

где S - площадь пика в спектре остаточной активности,  $I_g$  - квантовый выход,  $\varepsilon$  - эффективность детектора,  $t_2$  - время, прошедшее от конца облучения до начала измерения,  $t_3$  - время, прошедшее от конца облучения до окончания измерения.

Эффективность детектора рассчитывалась на основе модели установки с использованием пакета GEANT4 и измерений калибровочных источников. Для получения абсолютных значений выходов фотоядерных реакций в эксперименте по облучению мишени из оксида эрбия вместе с исследуемой мишенью облучался монитор из меди. Калибровка тока ускорителя проводилась сравнением экспериментально измеренного выхода реакции  ${}^{65}$ Cu $(\gamma, 1n)^{64}$ Cu на мониторной мишени, рассчитанным по формуле 3, с выходом, рассчитанным по формуле 2 с использованием оцененного сечения и тормозного спектра, рассчитанного по программе GEANT4. Медь была выбрана в качестве монитора, потому что сечение реакции  ${}^{65}$ Cu $(\gamma, 1n)^{64}$ Cu измерено с приемлемой точностью [19]. Полученные абсолютные экспериментальные выходы образования изотопов Er и Ho при облучении оксида эрбия приведены в таблице 4. Размерность выхода 1/e – число изотопов образующихся в мишени на один электрон от ускорителя. Также в таблице 4 приведены выходы образования изотопов Er и Ho в единицах Бк/(мкА ч г/см<sup>2</sup>), которые удобны для сравнения активности целевых и побочных нуклидов, при сравнении с альтернативными способами наработки на пучках заряженных частиц, и позволяют пересчитать активность наработанного изотопа при более длительном облучении и другой величине тока.

В случае эксперимента на ртути использовалась жидкая мишень, причем ее размер был больше размера тормозного пучка, поэтому не удалось получить абсолютные выходы. Были измерены относительные выходы образования изотопов Hg и Hg. Относительные выходы образования изотопов Hg и Au при облучении естественной смеси изотопов ртути тормозным пучком с максимальной энергией 55 МэВ, нормированные на выход фотонейтронной реакции на самом тяжелом стабильном изотопе ртути  $^{204}$ Hg $(\gamma, n)^{203}$ Hg. Для расчета абсолютных значений выходов был расчитан выход реакции  $^{204}$ Hg $(\gamma, n)^{203}$ Hg с использованием теретических сечений, рассчитанных по комбинированной модели фотонуклонных реакций. В этом случае реакция  $^{204}$ Hg $(\gamma, n)^{203}$ Hg считалась мониторной. Абсолютные значения выходов образования изотопов Hg и Au рассчитанные с такой нормировкой приведены в последнем столбце таблицы 5.



Рис. 4: Спектр остаточной активности облученной мишени из эрбия через 20 часов после окончания облучения. Время измерения спектра - 7 часов.



Рис. 5: Спектр остаточной активности облученной мишени из ртути через 36 часов после окончания облучения. Время измерения спектра - 15 часов.

## 3 Обсуждение результатов

Полученные результаты о возможной нарабатываемой активности перспективных для ядерной медицины нуклидов <sup>166</sup>Но и <sup>198,199</sup>Аu, нормированные на прошедний через тормозную мишень заряд и толщину облучаемой мишени, приведены в таблицах 4 и 5. Других работ по фотоядерному получению этих изотопов нет. Применение реакций под действием легких заряженных частиц (р, d, ядер гелия) для наработки <sup>166</sup>Но невозможно из-за отсутствия подходящих мишеней. Наработка <sup>198,199</sup>Au на циклотронах под действием пучка протонов ограничена использованием дорогостоящих мишеней из платины. Получение <sup>198,199</sup>Au в реакторах требует предельно дорогих мишеней из золота или обогащённой платины. Поэтому фотоядерных метод может иметь ряд преимуществ: минимальное количесво носителя, использование недорогих мишеней и др., в случае высокой нарабатываемой удельной активности. Использованный нами ускоритель PM55 имеет достаточно низкий средний ток и не может использоваться для наработки изотопов в достаточных для медицины количествах. Поэтому был выполнен пересчет возможных активностей для ускорителя электронов с энергией 55 МэВ со средним током 1мА при облучении в течении суток мишеней из эрбия и ртути естественного изотопного состава массой 1 г с использованием измеренных выходов. Для  $^{166}$ Но активность составила 0.6 ГБк, для  $^{198}$ А<br/>и и  $^{199}$ Аu 1.48 ГБк и 1.59 ГБк соответственно. Для медицинских процедур требуются единицы ГБк активности <sup>166</sup>Но и <sup>198,199</sup>Аu. Полученные результаты можно считать указанием на возможность использования фотоядерных реакций для наработки <sup>166</sup>Но и <sup>198,199</sup>Аu.

Помимо высокой удельной активности необходимо иметь информацию о всех возможных ядерных реакциях проходящих в образце, чтобы оценить вклад побочных радиоактивных продуктов или количество стабильных изотопов. Активационный метод не позволяет определить количество стабильных ядер (например <sup>165</sup>Но и <sup>197</sup>Au), накопленных в образце во время облучения. Для этих целей можно использовать теоретические сечения фотоядерных реакций. Необходимо оценить насколько теоретические сечения совпадают с экспериментальными.

Для теоретического расчета была выбрана комбинированная модель фотоядерных реакций (КМФР) [20]. В КМФР образование возбужденного состояния системы описывается с помощью полумикроскопической модели колебаний и квазидейтронной модели фотопоглощения. В КМФР полное сечение фотопоглощения описывается суммой гигантского дипольного резонанса (ГДР), квазидейтронного механизма поглощения (КД), изовекторного квадрупольного резонанса (КР) и обертона ГДР (ГДР2). В КМФР учитывается также влияния изоспиновых эффектов на распад ГДР, что особенно важно при расчете фотопротонных реакций.

Наши эксперименты были выполнен с достаточно тонкой тормозной мишенью — 0.2

мм. Абсолютные выходы фотоядерных на тормозных пучках в экспериментах, выполненных в различной геометрии, будут отличаться друг от друга из-за различий в потоке тормозных фотонов. Для сравнения результатов различных экспериментов и для сравнения с теоретическими расчетами полученный выход приводится в виде сечения на эквивалентный квант:

$$\sigma_q = \frac{\int_{E^{thr}}^{E^m} \sigma(E_\gamma) W(E_\gamma, E^m) dE}{\frac{1}{E^m} \int_0^{E^m} E_\gamma \cdot W(E_\gamma, E^m) dE_\gamma}$$
(5)

В случае эксперимента на природной смеси изотопов необходимо учесть все возможные каналы образования конечного изотопа:

$$\sigma_q^{\text{nat}} = \frac{\sum_i \eta_i \int_{E^{thr}}^{E^m} \sigma(E_\gamma) W(E_\gamma, E^m) dE}{\frac{1}{E^m} \int_0^{E^m} E_\gamma \cdot W(E_\gamma, E^m) dE_\gamma}$$
(6)

Представление результатов через сечение на эквивалентный квант удобно, потому что эта величина мало зависит от тормозного спектра. Тормозные спектры на мишенях разной толщины сильно отличаются по количеству фотонов и мало по форме спектра. Поэтому величина, нормированная на число фотонов, будет примерно одинакова для экспериментов, выполненных в разной геометрии. Т.к. эксперимент выполнялся на естественной смеси изотопов, то при расчете теоретического сечения на эквивалентный квант учитывались все возможные реакции, приводящие к образовыанию данного изотопа (формула 6).

Сравнение экспериментальных  $\sigma_{q \ \text{эксп.}}^{\text{nat}}$  и теоретических  $\sigma_{q \ \text{КМФР.}}^{\text{nat}}$  сечений на эквивалентный квант фотоядерных реакций на естественной смеси изотопов эрбия и ртути при облучении тормозным спектром с верхней границей 55 МэВ приведены в таблицах 6 и 7 соответсвенно. Во второй колонке таблиц приведены реакции, приводящие к образованию изотопа. В третьей колонке приведены пороги парциальных реакций, приводящих к образованию исследуемых изотопов. В четвертой колонке приведены экспериментальные значения сечений на эквивалентный квант. Экспериментальные сечения образованию исследуемых изотопов. В четвертой колонке приведены экспериментальные значения сечений на эквивалентный квант. Экспериментальные сечения образования конечных изотопов на эквивалентный квант  $\sigma_{q \ \text{эксп.}}^{\text{nat}}$  включают все возможные каналы образования ядра. В пятой колонке приведены суммарные теоретические сечения на эквивалентный квант на природной смеси и парциальные по отдельным каналам с учетом процентного содержания исходных ядер в природной смеси, рассчитанные по формуле 6. Тормозные спектры рассчитывались на основе модели экспериментальной установки на GEANT4.

Таблица 6: Сравнение экспериментальных и теоретических сечений на эквивалентный квант фотоядерных реакций на естественной смеси изотопов Er

| Изотоп              | Реакция                           | $E_{\rm m},  {\rm M}$ эВ | $\sigma_{ m q}^{ m nat}$ мбн    | $\sigma_{ m q \ эксп.}^{ m nat},$ мбн |
|---------------------|-----------------------------------|--------------------------|---------------------------------|---------------------------------------|
| <sup>169</sup> Er   | $^{170}\mathrm{Er}(\gamma,1n)$    | 7.26                     | $18.99 \pm 4.41$                | 27.69                                 |
| <sup>163</sup> Er   | $^{nat}\mathrm{Er}(\gamma,in)$    |                          |                                 | 5.81                                  |
|                     | $^{164}\mathrm{Er}(\gamma,1n)$    | 8.85                     |                                 | 3.41                                  |
|                     | $^{166}\mathrm{Er}(\gamma, 3n)$   | 23.97                    | $4.43 \pm 1.31$                 | 1.89                                  |
|                     | $^{167}\mathrm{Er}(\gamma,4n)$    | 30.41                    |                                 | 0.45                                  |
|                     | $^{168}\mathrm{Er}(\gamma,5n)$    | 38.18                    |                                 | 0.06                                  |
| $^{161}\mathrm{Er}$ | $^{nat}\mathrm{Er}(\gamma,in)$    |                          |                                 | 0.40                                  |
|                     | $^{162}\mathrm{Er}(\gamma,1n)$    | 9.21                     | $0.22 \pm 0.02$                 | 0.29                                  |
|                     | $^{164}\mathrm{Er}(\gamma, 3n)$   | 25.35                    | $0.22\pm0.02$                   | 0.08                                  |
|                     | $^{166}\mathrm{Er}(\gamma,5n)$    | 40.48                    |                                 | 0.03                                  |
| <sup>167</sup> Ho   | $^{nat}\mathrm{Er}(\gamma, 1pin)$ |                          |                                 | 0.61                                  |
|                     | $^{168}\mathrm{Er}(\gamma,1p)$    | 22.18                    | $0.27\pm0.07$                   | 0.59                                  |
|                     | $^{170}\mathrm{Er}(\gamma, 1p2n)$ | 35.38                    |                                 | 0.02                                  |
| <sup>166</sup> Ho   | $^{nat}\mathrm{Er}(\gamma, 1pin)$ |                          |                                 | 0.59                                  |
|                     | $^{167}\mathrm{Er}(\gamma,1p)$    | 21.74                    | $0.29\pm0.02$                   | 0.46                                  |
|                     | $^{168}\mathrm{Er}(\gamma, 1p1n)$ | 29.46                    |                                 | 0.13                                  |
| 162mHo              | $^{nat}\mathrm{Er}(\gamma, 1pin)$ |                          |                                 |                                       |
|                     | $^{164}\mathrm{Er}(\gamma, 1p1n)$ | 29.55                    | $(1.08 \pm 1.06) \ 10^{-3}$     |                                       |
|                     | $^{166}\mathrm{Er}(\gamma, 1p3n)$ | 44.73                    | $(4.00 \pm 1.00) \cdot 10^{-5}$ |                                       |
|                     | $^{167}\mathrm{Er}(\gamma, 1p4n)$ | 51.27                    |                                 |                                       |

Наблюдается в целом удовлетворительное согласие между теоретическими и экспериментальными сечениями на эквивалентный квант в фотоядерных реакциях на естественных смесях изотопов Ег и Hg. Разница в сечениях фотонейтронных реакций на изотопах Ег составляет около 20% с учетом экспериментальной погрешности. Больная экспериментальная погрешность связана с низким квантовым выходом  $\gamma$ -квантов, образующихся при распаде ядер <sup>169</sup>Ег и <sup>163</sup>Ег. С другой стороны стабильные изотопы эрбия являются сильнодеформированными. Например, экспериментальное значение параметра деформации  $\beta_2(^{170}\text{Er}) = 0.291 \pm 0.058$  измерено с большой погрешностью, что также должно влиять на теоретические расчеты сечения фотопоглощения и будет в дальнейшей работе учтено нами. Теоретические сечения на эквивалентный квант для фотопротонных реакций на изотопах Ег и Hg оказываются завышенными примерно в 2 раза относительно экспериментальных. Это различие может быть связано как с расчетом компонент  $T_{<}$  и  $T_{>}$  при возбуждении и распаде ГДР, так и с другими механизмами возбуждения ядра под действием  $\gamma$ -квантов. В таблице 8 приведены вклады различных механизмов фотоядерных реакций в сечение на эквивалентный квант фотоядерных реакций в сечение на эквивалентные и сечены вклады различных механизмов фотоядерных реакций в сечение на эквивалентный квант фотоядерных реакций в сечение на эквивалентные за с по в сечение на эквивалентные на стабы в сечение на эквивалентные на ста

акций с образованием изотопа <sup>166</sup>Но, рассчитанных с помощью КМФР. При энергии электронов ускорителя 55 МэВ все перечисленные механизмы вносят значительный вклад в реакции с образованием <sup>166</sup>Но. Следующим этапом будет расчет всех возможных реакций, происходящих в образцах <sup>*nat*</sup>Ег и <sup>*nat*</sup>Нg, а также отдельных изотопах Ег и Hg, с помощью теоретических сечений по КМФР, и расчет оптимальных характеристик облучения (энергия облучения, изотопный состав мишени, геометрия облучения) для наработки изотопов <sup>166</sup>Но и <sup>198,199</sup>Аu.

Таблица 7: Сравнение экспериментальных и теоретических сечений на эквивалентный квант фотоядерных реакций на естественной смеси изотопов Hg

| Изотоп              | Реакция                            | $E_{\pi}$ , МэВ | $\sigma_{ m q \ эксп.}^{ m nat},$ мбн | $\sigma_{\rm q \ эксп.}^{\rm nat},$ мбн |
|---------------------|------------------------------------|-----------------|---------------------------------------|-----------------------------------------|
| <sup>203</sup> Hg   | $^{204}\mathrm{Hg}(\gamma,1n)$     |                 | $17.06 \pm 0.11$                      | 17.06                                   |
| $^{199m}$ Hg        | $^{nat}\mathrm{Hg}(\gamma,in)$     |                 |                                       |                                         |
|                     | $^{199}\mathrm{Hg}(\gamma,\gamma)$ |                 |                                       |                                         |
|                     | $^{200}\mathrm{Hg}(\gamma,1n)$     | 8.0             | $5.35\pm0.02$                         |                                         |
|                     | $^{201}\mathrm{Hg}(\gamma,2n)$     | 14.3            |                                       |                                         |
|                     | $^{202}\mathrm{Hg}(\gamma,3n)$     | 22.5            |                                       |                                         |
| $^{197}\mathrm{Hg}$ | $^{nat}\mathrm{Hg}(\gamma,in)$     |                 |                                       | 33.58                                   |
|                     | $^{198}\mathrm{Hg}(\gamma,1n)$     | 8.5             |                                       | 26.03                                   |
|                     | $^{199}\mathrm{Hg}(\gamma,2n)$     | 15.1            | $38.36 \pm 1.18$                      | 5.84                                    |
|                     | $^{200}\mathrm{Hg}(\gamma,3n)$     | 23.5            |                                       | 1.33                                    |
|                     | $^{201}\mathrm{Hg}(\gamma,4n)$     | 29.7            |                                       | 0.29                                    |
| $^{195}\mathrm{Hg}$ | $^{nat}\mathrm{Hg}(\gamma,in)$     |                 |                                       | 1.22                                    |
|                     | $^{196}\mathrm{Hg}(\gamma,1n)$     | 8.9             |                                       | 0.38                                    |
|                     | $^{198}\mathrm{Hg}(\gamma,3n)$     | 24.3            | $1.42 \pm 0.03$                       | 0.50                                    |
|                     | $^{199}\mathrm{Hg}(\gamma,4n)$     | 30.5            |                                       | 0.31                                    |
|                     | $^{200}\mathrm{Hg}(\gamma,5n)$     | 39.0            |                                       | 0.03                                    |
| <sup>199</sup> Au   | $^{nat}\mathrm{Hg}(\gamma,1pin)$   |                 |                                       | 0.84                                    |
|                     | $^{200}\mathrm{Hg}(\gamma,1p)$     | 23.9            | $0.46 \pm 0.04$                       | 0.76                                    |
|                     | $^{201}\mathrm{Hg}(\gamma,1p1n)$   | 30.6            | $0.40 \pm 0.04$                       | 0.05                                    |
|                     | $^{202}\mathrm{Hg}(\gamma,1p2n)$   | 37.3            |                                       | 0.03                                    |
| <sup>198</sup> Au   | $^{nat}\mathrm{Hg}(\gamma,1pin)$   |                 |                                       | 0.70                                    |
|                     | $^{199}\mathrm{Hg}(\gamma,1p)$     | 23.3            | $0.37\pm0.01$                         | 0.61                                    |
|                     | $^{200}$ Hg $(\gamma, 1p1n)$       | 31.5            |                                       | 0.07                                    |
| <sup>196</sup> Au   | $^{nat}\mathrm{Hg}(\gamma,1pin)$   |                 |                                       | 0.05                                    |
|                     | $^{198}\mathrm{Hg}(\gamma,1p1n)$   | 31.4            | $(0.76 \pm 0.01) \cdot 10^{-1}$       | 0.03                                    |
|                     | $^{199}\mathrm{Hg}(\gamma,1p2n)$   | 37.8            |                                       | 0.02                                    |

Таблица 8: Сечения на эквивалентный квант для различных механизмов фотоядерных реакций с образованием изотопа <sup>166</sup>Ho.  $\sigma_{q \text{ tot}}^{nat}$  — суммарное сечение на эквивалентный квант фотоядерных реакций с образованием изотопа <sup>166</sup>Ho.

| Изотоп            | $\sigma_{ m q\ tot}^{ m nat},$ мб | $\sigma_{{\rm q}~{\rm T}_{<}}^{\rm nat},$ мб | $\sigma_{\rm q~T_>}^{\rm nat},$ мб | $\sigma^{ m nat}_{ m q~\Gamma ДP2},$ мб | $\sigma_{ m q\ KP}^{ m nat},$ мб | $\sigma^{ m nat}_{ m q~KД},$ мб |
|-------------------|-----------------------------------|----------------------------------------------|------------------------------------|-----------------------------------------|----------------------------------|---------------------------------|
| <sup>166</sup> Ho | 0.59                              | 0.33                                         | 0.07                               | 0.04                                    | 0.10                             | 0.05                            |

#### 4 Заключение

На пучке тормозного  $\gamma$ -излучения с максимальной энергией 55 МэВ измерены выходы и сечения на эквивалентный квант фотоядерных реакций на природной смеси изотопов Ег и Нg. Выполнен расчет возможных активностей перспективных ядл ядерной медицины нуклидов <sup>166</sup>Но и <sup>198,199</sup>Au, образующихся в фотоядерных реакциях, для ускорителя электронов с энергией 55 МэВ со средним током 1мА при облучении в течении суток мишеней из эрбия и ртути естественного изотопного состава массой 1 г с использованием измеренных выходов. Для <sup>166</sup>Но активность составила 0.6 ГБк, для <sup>198</sup>Au и <sup>199</sup>Au 1.48 ГБк и 1.59 ГБк соответственно. Для медицинских процедур требуются единицы ГБк активности <sup>166</sup>Но и <sup>198,199</sup>Au. Полученные результаты можно считать указанием на возможность использования фотоядерных реакций для наработки <sup>166</sup>Но и <sup>198,199</sup>Au. Выполнено сравнение полученных результатов с теоретическими расчетами сечений фотоядерных реакций по комбинированной модели фотоядерных реакций. Показано в целом хорошее согласие экспериментальных данных и теоретических расчетов, что указывает на возможность применения КМФР в задачах планирования эксперимента по наработке медицинских изотопов на тормозных пучках.

### Список литературы

- [1] Willoson K. // Eur. J. Phys. 2019. 40. 4.
- [2] Chakraborty, S., Unni, P., Banerjee S., et al. // Nucl. Med. and Biol. 2001. 28 (3). p. 309–317.
- [3] C. Chiesa, M. Maccauro // Eur. Jour. of Nucl. Med. and Mol. Imag. 2020. 47 p. 744–747
- [4] Lahiri, S., Volkers, K. J., Wierczinski, B. // Appl. Rad. and Isot. 2004. 61 (6). p. 1157–1161.
- [5] Bayram, T., Akkoyun, S., Uruk, S., et al. // Intern. Journ. of Mod. Phys. E. 2016. 25 (12). p. 1650107-1.
- [6] S.M. Hasany, I. Hanif, I.H. Qureshi // Appl. Radiat. Isot. 1978. 29 (3). p. 145-149.
- [7] P.J. Blower // Dalton Transactions. 2015. 44 (11). p. 4819-4844.
- [8] C. Cutler, P. Kan, N. Chanda, N., et al. // Transactions of the American Nuclear Society.1978. 103. p. 1123-1124.
- [9] Anderson, P., Vaughan, A. T. M., Varley, N. R. // Int. Jour. of Radiat. Appl. and Instrum. Part B. Nucl. Med. and Biol. 1988. 15 (3). p. 293–297.
- [10] Knapp F.F., Dash A. // Radiopharmaceuticals for therapy. 2016.
- [11] Y. Fazaelia, O. Akhavanbc, R. Rahighi, et al. // Materials Science and Engineering: C. 2014. 45. p. 196-204
- [12] Vimalnath K. V., Chakraborty, S., Dash A. // RSC Advances. 2016. 6 (86). p. 82832–82841.
- [13] Ditrói, F., Tárkányi, F., Csikai, J., et al. // Nucl. Instr. and Met. B. 2006. 243 (1). p. 20–27.
- [14] Tárkányi, F., Hermanne, A., Ditrói, F., et al. // Nucl. Instr. and Met. B. 2015. 362.
   p. 116–132.
- [15] Ишханов Б.С., Орлин В.Н., Трощиев С.Ю. // ЯФ 2011. 74 (5). с. 733–739.
- [16] Ишханов Б.С., Орлин В.Н. // ЭЧАЯ 2007. 38. с. 460.
- [17] Ишханов Б.С., Орлин В.Н. // ЯФ 2008. 71. с. 517.
- [18] K. Masumoto, T. Kato, N. Suzuki // Nucl. Instr. and Met. 1978. 157. p. 567-577.
- [19] Варламов В.В., Давидов А.И., Макаров М.А. и др. // Изв. РАН Сер. физ. 2016. Т. 80. С. 351.
- [20] Ишханов Б. С., Орлин В. Н. // ЯФ 2015. 78. 7-8. с. 601-617.