Вопрос: Позволяет ли предлагаемая модернизация камеры ускорителя получить ответ о происхождении обойдённых ядер? Если да, то как и каких именно?

Ответ: Да, позволяет. С помощью измерений выходов фотоядерных реакций, выполненных при энергии 15 МэВ, их можно дополнить измерениями при энергии электронов 10 МэВ от линейного ускорителя электронов НИИЯФ МГУ. Можно сделать выводы о правильности измеренных сечений фотонейтронных реакций на пучках квазимонохроматических фотонов и делать оценки сечений, а также на основе сравнения с теоретическими расчетами делать выводы о применимости модельных параметров, использованных при расчетах сечений. Эти выводы можно делать для ядер, у которых активационным методом можно измерить выходы фотоядерных реакций, приводящих к их образованию и распаду. Например, ${}^{92}Mo$, ${}^{96}Ru$, ${}^{102}Pd$, ${}^{106}Cd$, ${}^{112}Sn$ и др.

Данный вопрос мы рассматривали при моделировании возможных на модернизированном ускорителе экспериментов, он должен был войти в диплом. Далее приведу некоторые расчеты из диплома.

Обойденные ядра — это группа из 35 стабильных ядер с дефицитом нейтронов, начинаются с ⁷⁴Se. Обойденные ядра характеризуются очень низкой распространенностью, их образование невозможно описать реакциями захвата нейтронов. Фотоядерные реакции считаютя одним из механизмов образования обойденных ядер: последовательные фотонейтронные реакции (g, n), (g,2n), (g,a). Считается, что обойденные ядра образуются при взрыве сверхновых, когда температура в звезде порядка 10⁹ К. Рассмотрим p-процесс на примере ⁹²Mo (рис.1). Реакции ведущие к образованию ⁹²Mo : ⁹⁴Mo(γ , 1n)⁹³Mo, ⁹³Mo(γ , 1n)⁹²Mo, ⁹⁶Ru(γ , α)⁹²Mo. За разрушение ⁹²Mo в процессе нуклеосинтеза ответственны фотоядерные реакции: ⁹²Mo(γ , 1n)⁹²Mo, ⁹²Mo(γ , 1p)⁹¹Nb, ⁹²Mo(γ , α)⁸⁸Zr, а также реакции захватат нейтронов. Нужно иметь информацию о всех возможных реакциях.

В литературе подробно изучается p-процесс на равновесных фотонах при взрывах сверхновых, основная величина, необходимая для расчетов распространенности обойденных ядер в этих процессах — скорость реакции:

$$\lambda_{(\gamma,i)} = \int_{0}^{\infty} n_{\gamma}(E)\sigma_{(\gamma,i)}(E)dE, \qquad (1)$$

где c — скорость света, E — энергия γ -квантов, $n_{\gamma}(E)$ — распределение фотонов по энергии при данной температуре в звезде (Планковское распределение), $\sigma_{(\gamma,i)}(E)$ — сечение фотоядерной реакции.

Для описания механизма образования обойденных ядер в результате нуклеосинтеза нужны либо сечения реакций либо скорости реакций. Исходя из спектра черного тела, ясно что нужна информация о сечениях в районе порогов реакций. Для $(\gamma, 1n)$ порог находится в районе 8-10 МэВ.

Рис. 1: Возможные пути образования обойденного ядра ${}^{92}Mo$ в результате фото-ядерных реакций.

На тормозных пучках можно измерять неспредственно скорость реакции. В работе [1] показано, что спектр черного тела можно представить суммой тормозных спектров (рис.2), соответсвенно суммируя выходы реакций с разными весами, можно получить непосредсвенно скорость реакции. Для этого нужно менять энергию электронов более плавно, чем у нас. При наших возможностях этот метод недоступен.

Рис. 2: Аппроксимация планковского распределения суммой тормозных спектров. рисунок взят из работы [1].

На пучках квазимонохроматических у-квантов можно измерять сечение в районе

порога реакций и дальше рассчитывать скорость реакций. Однако существуют большие отличия между экспериментами. На рис.3. приведены сечения реакции ${}^{94}Mo(\gamma, 1n){}^{93}Mo$, измеренные в разных лабораториях на установках NewSubaru [2], HIgS [3] и в Сакле [4]. Также приведены сечения, рассчитанные теоретически с помощью программы TALYS. На рис.4 приведены выходы реакции ${}^{94}Mo(\gamma, 1n){}^{93}Mo$, рассчитанные на основе интерполированных сечений из [2–4] и теортеического сечения TALYS с использованием тормозных спектров с максимальной энергией 10 - 15 МэВ. Также эти результаты приведены в таблице 1. Единица измерения мб/е, дальше будет пересчитано в единицах сечения на экв. квант.

Активационный эксперимент позволяет измерить выходы фотоядерных реакций с погрешностью около 10 %, поэтому проводя измерения выходов при энергии 15 МэВ мы сможем сделать вывод о применимости того или иного сечения и сдкелать оценку.

Рис. 3: Сечения фотоядерной реакции ${}^{94}Mo(\gamma, 1n){}^{93}Mo$ измеренные на пучках квазимонохроматических фотонов [2–4], теортеическое сечение, рассчитанное по программе TALYS.

Таблица 1: Выходы фотоядерной реакции ${}^{94}Mo(\gamma, 1n){}^{93}Mo$ рассчитанные на основе экспериментальных сечений [2–4] и теортеического сечения TALYS. Единица измерения мб/е

E_e , МэВ	[2]	[3]	[4]	TALYS
10	0.00040	0.00026	0.00030	0.00218
11	0.0086	0.0067	0.0080	0.0201
12	0.032	0.024	0.031	0.060
13		0.058	0.080	0.133
14		0.116	0.167	0.250
15		0.213	0.313	0.433

Рис. 4: Выходы фотоядерной реакции ${}^{94}Mo(\gamma, 1n){}^{93}Mo$ рассчитанные на основе экспериментальных сечений [2–4] и теортеического сечения TALYS.

В звездах при высокой температуре часть ядер находятся в возбужденных состояниях и нужно учитывать реакции на возбужденных состояниях ядер. Экспериментально измерить их нельзя. Мы можем делать выводы только о параметрах теоретических расчетов на основных состояниях ядер.

Список литературы

- K Sonnabend, J Glorius et al. Activation Experiments for p-Process Nucleosynthesis. Journal of Physics: Conference Series 312 (2011) 042007
- H. Utsunomiya, S. Goriely, T. Kondo et al. Photoneutron cross sections for Mo isotopes: A step towards a unified understanding of (gamma,n) and (n,gamma) reactions. J,PR/C,88,015805,2013
- [3] A.Banu, E.G.Meekins, J.A.Silano, H.J.Karwowski, S.Goriely Photoneutron reaction cross section measurements on 94Mo and 90Zr relevant to the p-process nucleosynthesis. J,PR/C,99,025802,2019
- [4] H.Beil, R.Bergere, P. Carlos, A.Lepretre, A.De Miniac, A. Veyssiere A study of the photoneutron contribution to the giant dipole resonance in doubly even Mo isotopes. J,NP/A,227,427,1974