УДК 539.17

ОЦЕНКА ДОСТОВЕРНЫХ СЕЧЕНИЙ ПАРЦИАЛЬНЫХ И ПОЛНОЙ ФОТОНЕЙТРОННЫХ РЕАКЦИЙ ДЛЯ ЯДРА ¹³⁹La

© 2018 г. В. В. Варламов¹, В. Д. Кайдарова^{2,*}

¹Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова, Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына

²Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова, физический факультет *E-mail: vd.kaydarova@physics.msu.ru

Для ядра ¹³⁹La оценены сечения парциальных фотонейтронных реакций, свободные от недостатков различных методов определения множественности нейтронов, используемых на пучках квазимоноэнергетических аннигиляционных фотонов. С помощью экспериментально-теоретического метода оценки сечений парциальных реакций, удовлетворяющих введенным критериям достоверности, получены новые данные о сечениях реакции (γ , 1n), (γ , 2n) и (γ , 3n). Показано, что значительные отклонения экспериментальных сечений реакций от оцененных сечений обусловлены недостоверным распределением нейтронов между каналами с множественностью 1, 2 и 3.

DOI: 10.7868/S0367676518060030

ВВЕДЕНИЕ

В рамках программы исследований данных по сечениям парциальных фотонейтронных реакций [1, 2, 13, 14] было показано, что большинство данных такого типа, полученных на пучках квазимоноэнергетических аннигиляционных фотонов с помощью различных экспериментальных методов разделения фотонейтронов по множественности, содержат значительные систематические погрешности, обусловленные неоднозначностью определения множественности детектируемых нейтронов по их кинетической энергии.

В различных областях энергий налетающих фотонов специально введенные критерии присутствия систематических погрешностей — переходные функции множественности

$$F_i = \sigma(\gamma, in)/\sigma(\gamma, xn) =$$

$$= \sigma(\gamma, in)/[\sigma(\gamma, 1n) + 2\sigma(\sigma, 2n) + 3\sigma(\gamma, 3n) + ...]$$
(1)

имеют значения, превышающие физически допустимые по определению значения 1.00, 0.50, 0.33, ... соответственно для i = 1, 2, 3, ... Превышение отношениями $F_i^{\operatorname{эксп}}$ указанных предельных значений свидетельствует о физически недостоверном распределении нейтронов между реакциями (γ , 1n) и (γ , 2n), (γ , 2n) и (γ , 3n) и т.д., обусловленном присутствием значительных систематических погрешностей метода определения множественности нейтронов.

С целью получения данных о сечениях парциальных фотонейтронных реакций, свободных от такого рода систематических погрешностей, был предложен [2, 14] экспериментально-теоретический метод их оценки.

Он основан на использовании в качестве исходной экспериментальной информации данных по сечению реакции выхода нейтронов

$$\sigma(\gamma, xn) = \sigma(\gamma, 1n) + 2\sigma(\gamma, 2n) + 3\sigma(\gamma, 3n) + \dots, (2)$$

которое практически не зависит от проблем экспериментального разделения нейтронов по множественности, поскольку включает в себя все испущенные исследуемым ядром нейтронов на сечения парциальных реакций (γ , 1n), (γ , 2n) и (γ , 3n) проводится с помощью результатов расчетов, выполненных в рамках комбинированной модели (KM) фотоядерных реакций [3, 4]. При таком подходе оценка сечений парциальных реакций $\sigma^{\text{оцен}}(\gamma, in)$ выполняется с использованием энергетических зависимостей рассчитанных переходных функций $F_i^{\text{теор}}$ и экспериментальных данных по сечению реакции выхода фотонейтронов $\sigma^{\text{эксп}}(\gamma, xn)$:

$$\sigma^{\text{oueh}}(\gamma, in) = F_i^{\text{reop}} \sigma^{\text{эксп}}(\gamma, xn).$$
 (3)

Оцененные данные по сечениям парциальных реакций (γ , 1n), (γ , 2n) и (γ , 3n), а также полной фотонейтронной реакции

$$\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n) + \sigma(\gamma, 3n) + \dots, (4)$$

которая в случае средних и тяжелых ядер представляет собой хорошее приближение к сечению реакции фотопоглощения, ранее были получены в рамках описанного выше подхода для большого числа средних и тяжелых ядер – 92,94 Zr, ¹¹⁵In, ^{116–124}Sn, ¹⁵⁹Tb, ^{186–192}Os, ¹⁹⁷Au, ¹⁸¹Ta, ²⁰⁸Pb, ²⁰⁹Bi [1, 2, 13–15]. На основании сравнения оцененных данных с результатами альтернативных экспериментов, выполненных с помощью активационного метода для ядер ¹⁸¹Ta, ¹⁹⁷Au и ²⁰⁹Bi, было показано, что о недостоверности экспериментальных данных свидетельствует не только наличие отношений $F_i^{\text{теор}}$, превышающих предельные значения, опи-

Рис. 1. Сравнение переходных функций множественности $F_i^{\mathfrak{skcn}}$ (1), полученных по экспериментальным данным ([5] – квадраты, [6] – светлые квадраты), с функциями F_i^{reop} (линии), полученными по результатам теоретических расчетов в KM [3, 4]: (а) – F_1 , (б) – F_2 , (в) – F_3 .

санные выше, но и заметные расхождения $F_i^{эксп}$ и $F_i^{\text{теор}}$. Кроме того, поскольку в отношения F_i входят только величины сечений реакций, достоверные $F_i^{\text{теор}}$ должны быть положительными величинами.

В настоящей работе анализ достоверности экспериментальных данных и оценка достоверных сечений парциальных и полной фотонейтронных реакций выполнены для ядра ¹³⁹La.

1. ПЕРЕХОДНЫЕ ФУНКЦИИ МНОЖЕСТВЕННОСТИ ФОТОНЕЙТРОНОВ *F*, ДЛЯ ЯДРА ¹³⁹La

Исследования фоторасщепления ядра ¹³⁹La выполнены в двух экспериментах на пучках квазимоноэнергетических аннигиляционных фотонов в Сакле (Франция) [5, 6]. На рис. 1 приведены энергетические зависимости переходных функций множественности нейтронов – отношений $F_i^{\text{эксп}}$ (1), полученных по данным работ [5, 6] для ядра ¹³⁹La, которые сравниваются с функциями $F_i^{\text{теор}}$ [3, 4]. Хорошо видно, что отношения $F_i^{\text{эксп}}$ и $F_i^{\text{теор}}$ заметно различаются во всей исследованной области энергий за исключением нескольких значений вблизи энергии ~ 20 МэВ, которые практически совпадают.

Следует отметить, что энергетические зависимости функций $F_{1,2,3}^{\text{теор}}$, рассчитанные в КМ [3, 4], являются физически достоверными, полностью соответствующими определениям (1):

– до порога B2n = 16.27 МэВ реакции (γ , 2n) $F_1^{\text{теор}} = 1$, а после открытия канала "2n" $F_1^{\text{теор}}$ уменьшается в соответствии с конкуренцией роста сечения $\sigma(\gamma, 2n)$ и уменьшения сечения $\sigma(\gamma, 1n)$, плавно приближаясь к значению 0;

– в той же области энергий $F_2^{\text{теор}} = 0$; после открытия канала "2*n*" $F_2^{\text{теор}}$ нарастает в соответствии с конкуренцией возрастающего сечения $\sigma(\gamma, 2n)$ и уменьшающегося сечения $\sigma(\gamma, 1n)$, приближается снизу к значению 0.50, нигде его не достигая, и при открытии канала "3*n*" уменьшается в соответствии с появлением вклада $3\sigma(\gamma, 3n)$ в знаменателе соотношения (1);

– до порога B3n = 25.41 МэВ реакции (γ , 3n) $F_3^{\text{reop}} = 0$, а при бо́льших энергиях нарастает в соответствии с конкуренцией возрастающего сечения $\sigma(\gamma, 3n)$ и уменьшающегося сечения $\sigma(\gamma, 2n)$.

При этом экспериментальные отношения $F_{1,2}^{\text{эксп}}$ заметно отличаются от соответствующих теоретических отношений $F_{1,2}^{\text{теор}}$:

– отношения $F_i^{\mathfrak{scn}}$, полученные для данных обоих экспериментов [5, 6], находятся вблизи F_i^{reop} , рассчитанных в рамках модели [3, 4], только при энергиях ~ 20 МэВ;

– как при меньших, так и при бо́льших энергиях наблюдаются заметные разногласия между $F_i^{3 \kappa c n}$ и $F_i^{\text{теор}}$.

В области энергий до ~ 20 МэВ $F_2^{3\kappa cn}$ заметно превышает $F_2^{\text{теор}}$. В области бо́льших энергий расхождение между ними становится еще больше. При этом поведение $F_2^{3\kappa cn}$ относительно $F_2^{\text{теор}}$ является как бы "зеркальным отражением" поведения $F_1^{3\kappa cn}$ относительно $F_1^{\text{теор}}$: при энергиях до ~ 20 МэВ $F_2^{\text{теор}}$ заметно превышает $F_2^{3\kappa cn}$, и при бо́льших энергиях расхождение между ними становится еще больше. Следует обратить особое внимание на то, что при энергиях, бо́льших ~ 21.5 МэВ (на ~ 4 МэВ ниже B3n) $F_2^{3\kappa cn}$, начинает заметно уменьшаться, хотя по определению (1) для этого нет никаких оснований.

Соответствующее этому уменьшению $F_2^{3\kappa cn}$ возрастание $F_1^{3\kappa cn}$ свидетельствует о недостоверном перемещении части нейтронов из реакции (γ , 2n) в реакцию (γ , 1n).

Такие корреляции свидетельствуют о том, что экспериментальное разделение нейтронов между обсуждаемыми парциальными реакциями было выполнено не вполне достоверно.

2. ЭКСПЕРИМЕНТАЛЬНО-ТЕОРЕТИЧЕСКИЙ МЕТОД ОЦЕНКИ СЕЧЕНИЙ ПАРЦИАЛЬНЫХ ФОТОНЕЙТРОННЫХ РЕАКЦИЙ

Для получения данных по сечениям парциальных фотонейтронных реакций, не зависящих от недостатков экспериментальных методов разделения нейтронов по множественности, предложен экспериментально-теоретический метод оценки [1, 2]. Оценка достоверных данных по конкурирующим реакциям (γ , 1n), (γ , 2n) и (γ , 3n) выполняется следующим образом:

– теоретически рассчитанные в рамках КМ [3, 4] сечения реакций $\sigma^{\text{теор}}(\gamma, 1n)$, $\sigma^{\text{теор}}(\gamma, 2n)$ и $\sigma^{\text{теор}}(\gamma, 3n)$ объединяются (2) в сечение реакции выхода $\sigma^{\text{теор}}(\gamma, xn)$;

— для каждого значения энергии фотонов E рассчитываются переходные функции $F_i^{\text{reop}}(E)$, описывающие вклады в сечение $\sigma(\gamma, xn)$ реакций с образованием *i* нейтронов;

– с использованием энергетических зависимостей переходных функций $F_i^{\text{теор}}(E)$ и экспериментальных данных по сечению реакции выхода фотонейтронов $\sigma^{\text{эксп}}(\gamma, xn)$ для каждого значения множественности нейтронов *i* получаются оцененные сечения $\sigma^{\text{оцен}}(\gamma, in)$ парциальных реакций (3).

2.1. Реакция выхода фотонейтронов (ү, хп)

В рамках предложенного метода оценки сечений парциальных фотонейтронных реакций, удовлетворяющих введенным объективным физическим

Рис. 2. Сравнение исходного (штриховая линия) и скорректированного (сплошная линия) теоретических [3, 4] сечений реакции выхода фотонейтронов (γ , *xn*) с экспериментальными данными ([5] – квадраты, [6] – светлые квадраты до энергии 18 МэВ, [6] – кружки в области энергии ~ 18–24 МэВ (получены нами с помощью соответствующего суммирования (2)).

критериям достоверности данных, особое значение приобретает степень согласия с экспериментальными данными сечений реакции выхода фотонейтронов (γ , *xn*), рассчитанных в рамках КМ. На предварительном этапе оценки сечений парциальных реакций экспериментальное и теоретическое сечения выхода нейтронов по возможности полно согласовываются друг с другом.

На рис. 2 с теоретическим сечением $\sigma^{\text{теор}}(\gamma, xn)$, рассчитанным в рамках КМ [3, 4], сравниваются экспериментальные сечения, полученные в экспериментах с квазимоноэнергетическими аннигиляционными фотонами [5, 6]. Видно, что оба экспериментальных сечения достаточно хорошо согласуются с результатом расчета. С учетом того обстоятельства, что в эксперименте [5] были определены сечения парциальных реакций (γ , 1n), (γ , 2n) и (γ , 3n), а в эксперименте [6] – только реакции (γ , 1n) и (γ , 2n), для процедуры оценки (3) в качестве исходного было выбрано сечение реакции $\sigma^{эксп}(\gamma, xn)$, полученное в эксперименте [5].

Следует отметить, что в эксперименте [6] сечение полной фотонейтронной реакции (4) и сечение реакции выхода (2) были получены до энергии 18 МэВ. В области энергий $\sim 18-24$ МэВ данные для сечений (2) и (3) были получены нами соответствующим суммированием сечений парциальных реакций (γ , 1n), (γ , 2n).

Перед тем как использовать в процедуре оценки (3) функции F_i^{reop} , с целью достижения максимально

ВАРЛАМОВ, КАЙДАРОВА

	<i>Е</i> ^{ц.т.} , МэВ	σ ^{инт} , МэВ мб
Область энергии	$E^{_{\rm ИНТ}} = 10.0 - 16.00 \; { m M} m { m B}$	
Эксперимент [5]	14.08	1202.33 ± 3.96
Теория – исх.	13.97	1170.22 ± 5.15
Теория – корр.	14.08	1201.82 ± 5.86
Эксперимент [6]	14.08	1077.52 ± 4.78

Таблица 1. Центры тяжести $E^{u,r}$ и интегральные сечения σ^{uhr} сечений реакции ¹³⁹La (γ , *xn*)

хорошего согласования экспериментального [5] и теоретического сечений в области основного максимума сечения, последнее было дополнительно слегка скорректировано – сдвинуто в сторону больших энергий на 0.106 МэВ и умножено на коэффициент 1.003. Соответствующие числовые значения для интегральных сечений реакции приведены в табл. 1. Скорректированные теоретические сечения были использованы для проведения оценки сечений парциальных реакций в рамках экспериментально-теоретического метода.

2.2. Оцененные сечения парциальных реакций, удовлетворяющие критериям достоверности данных

Сечения парциальных реакций (γ , 1n), (γ , 2n) и (γ , 3n), оцененные с помощью экспериментально-теоретического метода (3) при использовании в качестве исходных экспериментальных данных сечения $\sigma^{\text{эксп}}(\gamma, xn)$ [5], на рис. 3 сравниваются с соответствующими экспериментальными данными [5, 6]. В табл. 2 приведены интегральные характеристики экспериментальных и оцененных сечений всех обсуждаемых парциальных и полных реакций.

В целом картина расхождений между оцененными сечениями реакций, удовлетворяющих введенным критериям достоверности, и экспериментальными сечениями реакций, этим критериям не удовлетворяющими, оказывается следующей.

В области энергий ниже порога *B2n* реакции (γ , *2n*), где отсутствует проблема разделения нейтронов по множественности, расхождение экспериментальных [5] и оцененных невелико: различие интегральных сечений составляет 1.6% (1343.46 и 1322.35 МэВ мб). В области бо́льших энергий, при которых реакции (γ , *1n*) и (γ , *2n*) конкурируют, данные для обеих реакций существенно различаются. Так, $\sigma^{инт-оцен}(\gamma, 1n) < \sigma^{инт-эксп}(\gamma, 1n)$ на 6.0% (1763.54 и 1871.03 МэВ мб) [5], тогда как $\sigma^{инт-оцен}(\gamma, 2n) >$ $> \sigma^{инт-эксп}(\gamma, 2n)$ на 12.4% (389.17 и 340.73 МэВ мб) [5]. Такие значительные разнонаправленные расхождения сечений реакций (γ , *1n*) и (γ , *2n*) убедительно иллюстрируют причины существенных систематических погрешностей результатов выполненного эксперимента [5] — недостоверное перемещение значительного количества нейтронов из канала "2n" в канал "1n".

Разности между оцененными и экспериментальными [5] сечениями, полученные раздельно для реакций (ү, 1*n*) и (ү, 2*n*)

Рис. 3. Сравнение оцененных (кружки) и экспериментальных ([5] – квадраты, [6] – светлые квадраты до энергии 18 МэВ, [6] – ромбы в области энергии ~ 18–24 МэВ) данных по сечениям полных и парциальных фотонейтронных реакций на ядре ¹³⁹La: (а) – $\sigma(\gamma, sn)$, (б) – $\sigma(\gamma, 1n)$, (в) – $\sigma(\gamma, 2n)$, (г) – $\sigma(\gamma, 3n)$.

Реакция	$E^{\text{инт}} = B2n = 16.27 \text{ M} \Rightarrow B$			
	Оценка	Эксперимент [5]	Эксперимент [6]	
(γ, xn)	1343.46 ± 12.68	1321.84 ± 4.30	1175.49 ± 5.46	
(γ, <i>sn</i>)	1343.46 ± 12.68	1322.09 ± 9.61	1175.29 ± 5.46	
(γ, 1 <i>n</i>)	1343.46 ± 38.05	1322.35 ± 9.61	1175.09 ± 5.46	
Реакция	$E^{\text{инт}} = B3n = 25.41 \text{ M} \Rightarrow B$			
	Оценка	Эксперимент [5]	Эксперимент [6]	
(γ, xn)	2541.89 ± 14.59	2549.16 ± 9.03	2278.76 ± 10.17	
(γ, sn)	2152.72 ± 14.59	2210.31 ± 18.42	1985.18 ± 10.17	
(γ, 1 <i>n</i>)	1763.54 ± 41.04	1871.03 ± 18.42	1691.60 ± 10.17	
(<i>γ</i> , 2 <i>n</i>)	389.17 ± 9.55	340.73 ± 9.22	293.65 ± 3.79	
Реакция	$E^{\text{инт}} = 27.00 \text{ МэВ}$			
	Оценка	Эксперимент [5]	Эксперимент [6]	
(γ, xn)	2584.47 ± 14.66	2567.93 ± 9.21	2278.76 ± 10.17	
(γ, sn)	2176.09 ± 14.66	2222.52 ± 18.71	1985.18 ± 10.17	
(γ, 1 <i>n</i>)	1768.28 ± 41.05	1876.16 ± 18.71	1691.60 ± 10.17	
(<i>γ</i> , 2 <i>n</i>)	407.23 ± 9.87	378.98 ± 9.81	293.65 ± 3.79	

Таблица 2. Интегральные сечения о^{инт} оцененных сечений полных и парциальных фотонейтронных реакций для ядра ¹³⁹La в сравнении с экспериментальными данными [5, 6]

$$\Delta \sigma_{l}(\gamma, 1n) = \sigma^{\text{\tiny SKCII}}(\gamma, 1n) - \sigma^{\text{\tiny OUCH}}(\sigma, 1n), \qquad (5)$$

$$\Delta \sigma_2(\gamma, 2n) = \sigma^{\text{oueh}}(\gamma, 2n) - \sigma^{\text{skcn}}(\sigma, 2n), \quad (6)$$

приведены на рис. 4. Хорошо видна отмеченная выше корреляция расхождений экспериментальных и оцененных данных — перемещение большого количества нейтронов из канала "2*n*" в канал "1*n*".

Аналогичным является и соотношение оцененных и экспериментальных [6] сечений парциальных реакций. В области энергий, меньших порога *B2n* реакции (γ , *2n*), экспериментальное [6] интегральное сечение меньше оцененного интегрального сечения на 12.5% (1343.46 и 1175.09 МэВ мб). При бо́льших энергиях данные для реакции (γ , *1n*) интегральные сечения $\sigma^{инт-оцен}(\gamma, 1n)$ и $\sigma^{инт-эксп}(\gamma, 1n)$ различаются всего на 4.1% (1763.54 и 1691.60 МэВ мб). В то же время различие данных для реакции (γ , *2n*) весьма велико: расхождение $\sigma^{инт-оцен}(\gamma, 2n)$ и $\sigma^{инт-эксп}(\gamma, 2n)$ достигает 24.5% (389.17 и 293.65 МэВ мб).

Сравнение данных, приведенных на рис. 1 и 3, свидетельствует о том, что существуют значительные систематические погрешности процессов

разделения нейтронов по множественности. Отмеченные систематические погрешности в области энергий ~ 21–24 МэВ коррелируют: в $F_2^{3 \text{ксп}}$ наблюдается заметный спад, в то время как в функции $F_1^{3 \text{ксп}}$ наблюдается заметный рост. В соответствии

Рис. 4. Разность между оцененными и экспериментальными [5] сечениями реакций $\Delta \sigma_1(\gamma, 1n)$ – квадраты и $\Delta \sigma_2(\gamma, 2n)$ – кружки.

2018

с различиями в энергетических зависимостях отношений $F_i^{\text{эксп}}$ и $F_i^{\text{теор}}$ экспериментальные данные [5, 6] для сечений реакции (γ , 1n) оказываются недостоверно завышенными за счет присутствия в них вклада значительного числа нейтронов, которым необоснованно приписана множественность 1. В связи с этим экспериментальные данные для сечений реакции (γ , 2n) оказываются столь же необоснованно заниженными.

Как было показано в исследованиях [1, 2, 7–12], выполненных ранее для большого числа средних и тяжелых ядер, причиной таких несоответствий является важная особенность фотонейтронных реакций, не учитываемая использованным в экспериментах [5] методом определения множественности фотонейтронов – сложная и неоднозначная связь множественности нейтронов с их кинетической энергией. В работе [13] было показано, что энергетический спектр фотонейтронов при открытии каналов ГДР с возрастающим числом вылетающих нейтронов изменяется слабо (основной максимум практически не смещается и остается в области энергий ~ 0.7–1.0 МэВ).

ЗАКЛЮЧЕНИЕ

С использованием объективных физических критериев достоверности исследована достоверность экспериментальных данных по фоторасщеплению ядра ¹³⁹La, полученных в разных экспериментах. Показано, что сечения парциальных реакций (γ , *ln*), (γ , *2n*) и (γ , *3n*), полученные в экспериментах [5, 6] на пучках квазимоноэнергетических аннигиляционных фотонов с помощью методов разделения нейтронов по множественности, содержат значительные систематические погрешности. Обсуждаемые погрешности обусловлены близостью кинетических энергий нейтронов из разных парциальных реакций, существенно затрудняющей определение множественности нейтронов.

В рамках экспериментально-теоретического метода оценки сечений парциальных фотонейтронных реакций для ядра ¹³⁹La получены новые сечения парциальных реакций (γ , 1*n*), (γ , 2*n*) и (γ , 3*n*), а также полной фотонейтронной реакции (γ , *sn*), удовлетворяющие физическим критериям достоверности данных.

Работа выполнена в Отделе электромагнитных процессов и взаимодействий атомных ядер НИИЯФ МГУ при финансовой поддержке Международного агентства по атомной энергии (Исследовательский контракт 20501 в рамках Координационной программы F41032). Авторы выражают благодарность ведущему научному сотруднику В.Н. Орлину за проведение необходимых теоретических расчетов и профессору Б.С. Ишханову за большую помощь в обсуждении и интерпретации полученных данных.

СПИСОК ЛИТЕРАТУРЫ

- Варламов В.В., Ишханов Б.С., Орлин В.Н., Трощиев С.Ю. // Изв. РАН. Сер. физ. 2010. Т. 74. С. 884; Varlamov V.V., Ishkhanov B.S., Orlin V.N., Troshchiev S. Yu. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. P. 842.
- Варламов В.В., Ишханов Б.С., Орлин В.Н. // ЯФ. 2012. Т. 75. С. 1414; Varlamov V.V., Ishkhanov B.S., Orlin V.N. // Phys. Atom. Nucl. 2012. V. 75. P. 1339.
- Ишханов Б.С., Орлин В.Н. // ЭЧАЯ. 2007. Т. 38. С. 460; Ishkhanov B.S., Orlin V.N. // Phys. Part. Nucl. 2007. V. 38. P. 232.
- Ишханов Б.С., Орлин В.Н. // ЯФ. 2008. Т. 71. С. 517; Ishkhanov B.S., Orlin V.N. // Phys. Atom. Nucl. 2008. V. 71. P. 493.
- Bergere R., Beil H., Veyssiere A. // Nucl. Phys. 1968.
 V. 121. P. 427.
- Beil H., Bergere R., Carlos P., Lepretre A. et al. // Nucl. Phys. 1971. V. 172. P. 426.
- Варламов В.В., Ишханов Б.С., Орлин В.Н., Песков Н.Н. // ЯФ. 2016. Т. 79. С. 315; Varlamov V.V., Ishkhanov B.S., Orlin V.N., Peskov N.N. // Phys. Atom. Nucl. 2016. V. 79. P. 501.
- Варламов В.В., Давыдов А.И., Макаров М.А. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. С. 351; Varlamov V.V., Davydov A.I., Makarov M.A. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. P. 317.
- Варламов В.В., Макаров М.А., Песков Н.Н., Степанов М.Е. // ЯФ. 2015. Т. 78. С. 797; Varlamov V.V., Makarov M.A., Peskov N.N., Stepanov M.E. // Phys. Atom. Nucl. 2015. V. 78. P. 746.
- Belyshev S.S., Filipescu D.M., Gheoghe I. et al. // Eur. Phys. J. A. 2015. V. 51. P. 67.
- 11. Varlamov V.V., Ishkhanov B.S., Orlin V.N., Stopani K.A. // Eur. Phys. J. A. 2014. V. 50. P. 114.
- Варламов В.В., Ишханов Б.С., Орлин В.Н. и др. // ЯФ. 2013. Т. 76. С. 1484; Varlamov V.V., Ishkhanov B.S., Orlin V.N. et al. // Phys. Atom. Nucl. 2013. V. 76. P. 1403.
- Ишханов Б.С., Орлин В.Н., Трощиев С.Ю. // ЯФ. 2012. Т. 75. С. 283; Ishkhanov B.S., Orlin V.N., Troshchiev S. Yu. // Phys. Atom. Nucl. 2012. V. 75. P. 253.
- Варламов В.В., Ишханов Б.С., Орлин В.Н., Четверткова В.А. // Изв. РАН. Сер. физ. 2010. Т. 74.
 С. 875; Varlamov V.V., Ishkhanov B.S., Orlin V.N., Chetvertkova V.A. // Bull. Russ. Acad. Sci. Phys. 2010.
 V. 74. P. 833.
- Varlamov V., Ishkhanov B., Orlin V. // Phys Rev. C. 2017. V. 96. P. 044606.