ВОЛНЫ СВЕТА И ВЕЩЕСТВА

Е.В. Грызлова

НИИЯФ МГУ Осенний семестр 2013 г.

1. «Разминка».

2. Плоская волна и понятие волнового пакета – волны вещества.

3. Системы со сферической симметрией:

- а) Сферические функции и полиномы Лежандра. Некоторые свойства.
- б) Квантование трехмерной ямы, исчезновение уровней.
- в) физический пример трехмерной ямы эндоэральное соединение.
- г) сжатые атомы.

4. Начала теории рассеяния.

- 5. Резонансной рассеяния и вопрос о двойных полюсах матрицы рассеяния.
- 6. Двухуровневая система, связь лазерным полем.
- 7. Изучение антипротония.
- 8. Нобелевская премия по физике 2012 года. Изучение одиночной квантовой системы.

 $V(r) = \begin{cases} U, & R_1 < x < R_2 \\ 0 \end{cases}$

Разделение переменных в системах со сферической симметрией

$$-\frac{1}{2}\Delta\varphi(\vec{r}) + V(r)\varphi(\vec{r}) = E \cdot \varphi(\vec{r})$$

Исключаем угловые переменные

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2} \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

$$\begin{split} \varphi(\vec{r}) &= \widetilde{\varphi}(r)Y_{lm}(\vec{r}/r) \\ &- \frac{1}{2} \left(\frac{\partial^2}{\partial r^2} + \frac{2 \cdot \partial}{r \cdot \partial r} \right) \widetilde{\varphi}(r) + V(r) \widetilde{\varphi}(r) + \frac{l(l+1)}{2 \cdot r^2} \widetilde{\varphi}(r) = E \cdot \widetilde{\varphi}(r) \\ \psi(r) &= r \cdot \widetilde{\varphi}(r) \\ &- \frac{1}{2} \frac{\partial^2}{\partial r^2} \psi(r) + V(\vec{r}) \cdot \psi(r) + \frac{l(l+1)}{2 \cdot r^2} \psi(r) = E \cdot \psi(r) \end{split}$$

Сферические гармоники

Сумма всех возможных состояний является сферически симметричной

Сферические гармоники

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2} \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

 $\varphi(\vec{r}) = \widetilde{\varphi}(r) Y_{lm}(\vec{r}/r)$

Сферические функции

$$Y_{lm}(\vartheta,\varphi) = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(2l+1)(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}$$

Оператор пространственной инверсии $\theta \rightarrow \pi - \theta$, $\varphi \rightarrow \phi + \pi$ $\hat{P}Y_{lm}(\vartheta, \varphi) = (-1)^l Y_{lm}(\vartheta, \varphi)$

Сферические функции ортогональны и образуют полный набор $\int Y_{lm}(\vartheta, \varphi) Y_{l'm'}(\vartheta, \varphi) * d\Omega = \delta_{ll'} \delta_{mm'}$

$$\sum_{m} Y_{lm}(\vartheta_{1},\varphi_{1}) * Y_{lm}(\vartheta_{2},\varphi_{2}) = \frac{2l+1}{4\pi} P_{l}(\cos\theta)$$
$$Y_{lm}(\vartheta,\varphi)Y_{l'm'}(\vartheta,\varphi) = \sum_{LM} C_{lml'm'}^{LM}Y_{LM}(\vartheta,\varphi)$$

$$V(r) = \begin{cases} U, & R_1 < x < R_2 \\ 0 \end{cases}$$

$$\psi(r) = r \cdot \widetilde{\varphi}(r)$$

Сферическая потенциальная яма конечной глубины

 Сколько дискретных уровней в яме?
 Как изменяется число уровней при удалении ямы от начала координат (центра симметрии)?
 Всегда ли есть дискретный уровень?
 Где локализована волновая функция?

После исключения угловых переменных:

$$-\frac{1}{2}\left(\frac{\partial^2}{\partial r^2} + \frac{2\cdot\partial}{r\cdot\partial r}\right)\widetilde{\varphi}(r) + V(r)\widetilde{\varphi}(r) + \frac{l(l+1)}{2\cdot r^2}\widetilde{\varphi}(r) = E\cdot\widetilde{\varphi}(r)$$

$$-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) + \frac{l(l+1)}{2\cdot r^2}\psi(r) = E\cdot\psi(r)$$

S-СОСТОЯНИЕ

$$-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) = E\cdot\psi(r)$$

Уравнение совпадает с одномерным случаем. Совпадает ли спектр?

 $\psi(0) = 0 \cdot \widetilde{\varphi}(0) = 0$

Граничные условия для сферически симметричной системы

$$-\frac{1}{2}\left(\frac{\partial^2}{\partial r^2} + \frac{2\cdot\partial}{r\cdot\partial r}\right)\widetilde{\varphi}(r) + V(r)\widetilde{\varphi}(r) + \frac{l(l+1)}{2\cdot r^2}\widetilde{\varphi}(r) = E\cdot\widetilde{\varphi}(r)$$

 $\hat{p}_r = -i\left(\frac{\partial}{\partial r} + \frac{1}{r}\right)$ - вид оператора импульса в сферической системе координат

Условие эрмитовости оператора импульса:

 $V(r) = \begin{cases} U, & R_1 < x < R_2 \\ 0 \end{cases}$

$$-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) + \frac{l(l+1)}{2\cdot r^2}\psi(r) = E\cdot\psi(r)$$

$$\psi(r) = r^{s}(1 + a_{1}r + \cdots)$$

$$s(s-1) - l(l+1) = 0$$

$$s = l+1, \quad s = -l$$

Регулярное и нерегулярное в начале координат решение

Решения при г
$$\rightarrow \infty$$
 $-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) + \frac{l(l+1)}{2\cdot r^2}\psi(r) = E\cdot\psi(r)$

 $\psi(r) \sim e^{\pm \sqrt{2E}r} \qquad \psi(r) \sim \cos \sqrt{2E}r, \quad \sin \sqrt{2E}r$

Если *E*<0 то регулярное решение экспоненциально растет на бесконечности кроме некоторых значений *E*, если *E*>0 то осциллирует

 $V(r) = \begin{cases} U, & R_1 < x < R_2 \\ 0 \end{cases}$

$$-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) + \frac{l(l+1)}{2\cdot r^2}\psi(r) = E\cdot\psi(r)$$

Сферическая потенциальная яма конечной глубины

Два линейно независимых решения

$$\sqrt{r}I_{l+1/2}(kr) \qquad \qquad \sqrt{r}K_{l+1/2}(kr)$$

модифицированная функция Бесселя первого и второго рода (Инфельда и МакДональда)

Модуль волновой функции вероятности.

Сферически симметричная система Сферическая потенциальная яма конечной глубины $-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) + \frac{l(l+1)}{2\cdot r^2}\psi(r) = E\cdot\psi(r)$ одномерная *U*₀=10 au, D=1 au $V(r) = \begin{cases} U, & R_1 < x < R_2 \\ 0 \end{cases}$ E₁=-7.70 E₂=-1.86 1 $R_1=1 \text{ au}, R_2=R_1+1 \text{ au}, U_0=-10 \text{ au}$ E, au _ 4 - 2 - 6 -1 - 2 1=1 *l*=2 *l*=3 l=0E₁=-7.70 E₁=-7.21 E₁=-6.26 E₁=-4.92 $\varphi(\mathbf{r})$ E₂=-1.19 E₂=-1.83 ^{φ(r)} $E_{12}^{\varphi(r)} E_{2}=-0.14$ $\varphi(\mathbf{r})$ 1.2 1.2 1 1 0.8 0.8 0.8 0.6 0.6 0.6 0.8 0.4 0.4 0.4 0.2 0.2 0.2 0.6 1 2 1 2 5 2 3 0.4 0.2 1 2 3 4 5

Сферически симметричное эндоэдральное соединение типа H@C₆₀

Первое эндоэдральное соединение

H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley C₆₀: Buckminsterfullerene, *Lett. to Nature* **318**, 162 (1985).

W. Kraetschmer, K. Fostiropoulos, D. Lamb, D. R. Hufmann Solid C_{60} a new form of carbone, *Nature*, **347**, 354 (1990).

Элементы, с которыми были получены эндоэдральные соединения

Ι	П	Шb	IVb	Vb	VIb	V∏b		VШb		Ib	Пb	ш	\mathbf{IV}	V	$\mathbf{V}\mathbf{I}$	VП	0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Н																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	CI	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ba	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ТΙ	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh	-	
Lan	thani	des *	Ce	Pr	Nd	Ρm	Sm	i Eu	Gd	Τb	Dy	Ho	Er	Tm	Yb	Lu	
Acti	inides	**	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	-

.. Rep. Prog. Phys. 63, 843 (2000).

- . Phys. Rev. B 64, 125402 (2001).
- .. J. Phys. Chem. B 105, 5839 (2001).
- .. Adv. Mater. Proc. Mater. Sci. Forum **282**, 115 (1998).
- . Chem. Phys. Lett. 317, 490 (2000).
- . J. Chem. Phys. 117, 3484 (2002).
- .. J. Chem. Phys. 112, 2834 (2000).
- Chem. Commun. (2004) 1206.
- Phys. Rev. B. 72, 153411 (2005).
- Chem. Mater. 9 1773 (1997).

M. S. Dresselhaus, G. Dresselhaus, P.C. Eklund, "Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996, pp. 132-133.

- ... J. Am. Chem. Soc 123 181-182 (2001).
- . Nucl. Instruments and Methods in Physic Research B 243 277-281 (2006).
- ... J. Radioanal. Nuclear Chem. 255(1) 155-158 (2003)
- ... J. Phys. Chem. A 104 3940-3942 (2000)
- .. J. Am. Chem. Soc. 129 5131-5138 (2007)

Е.В. Грызлова, ИОФРАН, 2011

Первые наблюдения конфайнмент-резонансов

Y.B. Xu, M.Q. Tan, and U. Becker, *Phys. Rev. Lett.* **76**, 3538 (1996). «Oscillations in the Photoionization Cross Section of C_{60} »

Формирование конфайнмент-резонансов

Y.B. Xu, M.Q. Tan, and U. Becker, *Phys. Rev. Lett.* **76**, 3538 (1996). «Oscillations in the Photoionization Cross Section of C_{60} »

Спектр в потенциальной модели

Y.B. Xu, M.Q. Tan, and U. Becker, *Phys. Rev. Lett.* **76**, 3538 (1996). «Oscillations in the Photoionization Cross Section of C_{60} »

Спектр в потенциальной модели

J. L. Martins, N. Troullier and J.H. Weaver, *Chem. Phus. Lett.* **180**, 457 (1991). «Analysis of occupied and empty electronic states of C_{60} »

Потенциал H@C₆₀

U(r)

Спектр H@C₆₀ и H@C₃₆

уровень	Н	Яма@С ₆₀	$H@C_{60}$	Яма@С ₃₆	H@C ₃₆
1s	-0.5	-0.09697	-0.50014	-0.10323	-0.50187
2s	-0.125	-	-0.17762		-0.16617
2p	-0.125	-0.07122	-0.16312	-0.05084	-0.16416
3s	-0.05(5)	-	-0.05657		-0.06027
3p	-0.05(5)	0.02580	-0.05757		-0.05752
3d	-0.05(5)	-			

J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi and S.T. Manson, *J. Phys. B: At. Mol. Opt. Phys.* **32**, L239 (1999).

Спектр H@C₆₀ и H@C₃₆

Спектр фотоионизации H@C₆₀ и H@C₃₆

A N Grum-Grzhimailo, E V Gryzlova and S I Strakhova

«Effects of fullerene confining potential on the ionization of the hydrogen atom by a strong femtosecond VUV pulse»

J. Phys. B: At. Mol. Opt. Phys. 44, 235005 (2011).

Сжатие атомов и молекул

Потенциал

>Атом в кристалле (матрице) при криогенной температуре

>Атом в фуллерене

>Атомы при высоком давлении (ударные волны)

Константа сверхтонкого ресщепления

Векторный потенциал, создаваемый точечным магнитным диполем (ядром) и соответствующее магнитное поле

$$\vec{A} = \frac{\left[\vec{\mu}_n \times \vec{r}\right]}{r^3} = \left[\nabla \times \frac{\vec{\mu}_n}{r}\right], \quad A_0 = 0;$$
$$H = \left[\nabla \times \vec{A}\right] = \nabla \left(\nabla \frac{\vec{\mu}_n}{r}\right) - \nabla^2 \frac{\vec{\mu}_n}{r},$$

Взаимодействие магнитного момента электрона с магнитным полем

$$\langle \psi | -\frac{e\hbar}{2mc}H | \psi \rangle = -\frac{e\hbar}{2mc} \langle u | \sigma_z | u \rangle \langle \varphi(r) | H | \varphi(r) \rangle;$$

В первом порядке теории возмущений величина сверхтонкого расщепления

$$\delta E = -\frac{e\hbar}{2mc} \langle \varphi(r) | \nabla^2 \frac{\vec{\mu}_n}{r} | \varphi(r) \rangle = \frac{e\hbar}{2mc} 4\pi \vec{\mu}_n \langle \varphi(r) | \delta(r) | \varphi(r) \rangle = 4\pi \frac{e\hbar}{2mc} \vec{\mu}_n | \varphi(0) |^2$$
$$a = \frac{8\pi}{3} \mu_e \mu_n | \psi(0) |^2$$

Сжатие атомов в криокристаллах

Определение величины сжатия

Сверхтонкое расщепление

$$\varphi = (\mathbf{a} - \mathbf{a}_0)/\mathbf{a}_0$$
$$a = \frac{8\pi}{3} \mu_e \mu_n |\psi(0)|^2$$

 μ_e, μ_n - магнитные моменты электрона и ядра

atom	matrix	φ (%)	ref	atom	matrix	φ (%)	ref
Η	H_2	-0.23^{a}	2	D	Kr	$+0.62^{b}$	5
D	$\overline{D_2}$	-0.32^{a}	4	H	Ne	$+4.0^{c}$	6
H	Ne	-0.10^{a}	4	D	Ne	$+5.0^{\circ}$	6
D	Ne	-0.07^{a}	4	Н	Ar	$+10.8^{\circ}$	6
H	Ar	-0.47^{a}	4	Н	Kr	$+5.4^{\circ}$	6
D	Ar	-0.53^{a}	4	D	Kr	$+8.2^{\circ}$	6
H	Kr	-0.59^{a}	3	Π	Xe	-0.97^{a}	5
H	Ne	$+0.43^{b}$	3	D	Xe	-1.04^{b}	5
Η	Ar	$+1.15^{b}$	3	Н	Xe	-1.5^{c}	6
Η	Kr	$+0.47^{b}$	3	D	Xe	-1.8^{c}	6
Н	Kr	$+0.55^{b}$	5				

 Осаждение при электрическом разряде
 Фотолиз

- (2) Jen, C. K.; Foner, S. N.; Cochran, E. L.; Bowers, V. A. Phys. Rev. 112, 1169 (1958).
- (3) Foner, S. N.; Cochran, E. L.; Bowers, V. A.; Jen, C. K. J. Chem. Phys. 32, 963 (1960).
- (4) Zhitnikov, R. A.; Dmitriev, Y. A. In Optical Orientation of Atoms and Molecules; Klementiev, G., Ed.; Physical Institute Press: Leningrad, Vol. **2**, p 109 (1990).
- (5) Morton, J. R.; Preston, R. F.; Strach, S. J.; Adrian, F. J.; Jette, A.N. J. Chem. Phys. 70, 2889 (1979,).
- (6) Knight, L. B.; Rice, W. E.; Moore, L. J. Chem. Phys. 109,1409 (1998,).

Интерпретация величины сжатия

Сверхтонкое расщепление

$$a = \frac{8\pi}{3} \mu_e \mu_n |\psi(0)|^2$$

 μ_e , μ_n - магнитные моменты электрона и ядра

atom	matrix	φ (%)	ref	atom	matrix	φ (%)	ref
Η	H_2	-0.23^{a}	2	D	Kr	$+0.62^{b}$	5
D	D_2	-0.32^{a}	4	Η	Ne	$+4.0^{c}$	6
Η	Ne	-0.10^{a}	4	D	Ne	$+5.0^{\circ}$	6
D	Ne	-0.07^{a}	4	Η	Ar	$+10.8^{c}$	6
Η	Ar	-0.47^{a}	4	Η	Kr	$+5.4^{\circ}$	6
D	Ar	-0.53^{a}	4	D	Kr	$+8.2^{\circ}$	6
Η	Kr	-0.59^{a}	3	Η	Xe	-0.97^{a}	5
Η	Ne	$+0.43^{b}$	3	D	Xe	-1.04^{b}	5
Η	Ar	$+1.15^{b}$	3	Η	Xe	-1.5^{c}	6
Η	Kr	$+0.47^{b}$	3	D	Xe	-1.8^{c}	6
Η	Kr	$+0.55^{b}$	5				

а) газовый разряд;

b) фотолиз;

с) осаждение на SiO₂

Н Не Н Не Н Не Н Не Н Не Н Не Н Не

Энак изменения характеризует подкачку или утечку электронной плотности на ядре

Два эффекта противоположного знака наблюдаются одновременно. Ван-дер-Ваальсовская делокализация и спиновая поляризация Паули.

Для слабо поляризуемых атомов матрицы наблюдаются эффекты обоих знаков, но для сильно поляризуемого Хе один

Сжатие азота и фосфора (I)

(7) Adrian, F. J.; Cochran, E. L.; Bowers, V. A. AdV. Chem. 36, 50 (1962).

- (8) Knighrt, L. B.; Steadman, J. J. Chem. Phys. 77, 1150 (1982).
- (9) Dmitriev, Y. A.; Zhitnikov, R. A. J. Tech. Phys. 57, 1811 (1987).
- (10) Wylie, D.; Shuskus, A.; Young, C.; Gilliam, O. Phys. Rev.125, 451 (1962).

Сжатие азота и фосфора (II)

atom	atom n		φ (%)	ref
Р	Ar		+19	7
Ν	H_2		+9.6	8
Ν	N_2		+15.6	8
Ν	CH	4	+29.5	8
Ν	Ne		+7.8	9
Ν	KN	3, crystal	+48.6	10
atom		φ (%)	size of cage (Å)	ref
$N(a)C_{70}$		+49.1	7.80 (6.99, equator)	28
N@C ₆₆ (COO	$C_2H_5)_{12}$	+53.4	7.31	28
$N(a)C_{61}(COOO$	$C_{2}H_{5})_{2}$	+54.1		28
$N(a)C_{60}$,	+54.1	6.96	27, 28
$P(\tilde{a})C_{60}$		+250	6.96	29b
~				

Большое изменение (10-50%),
 связанное с размером атома
 Изменение заполнения оболочек

 Электронная конфигурация сохраняется

>Энергия связи не превышает 0.9 kcal/mol.

 Значительное изменение константы сверхтонкого расщепления 50%
 Сверхтонкое расщепление чувствительно к химическому соединению
 Структура подтверждается теоретическим анализом

⁽²⁷⁾ Pietzak, B.; Waiblinger, M.; Murphy, T. A.; Weibinger, A.; Hŏhne, M.; Dietel, E.; Hirsch, A. Chem. Phys. Lett. 279, 259 (1997).
(28) Dietel, E.; Hirsch, A.; Pietzak, B.; Wailblinger, M.; Lips, K.; Weidlinger, A.; Gruss, A.; Dinse, K.-P J. Am. Chem. Soc. 121, 2432 (1999).

^{(29) (}a) Weiden, N.; Goedde, B.; Käss, H.; Dinse, K.-H.; Rohrer, M. Phys. Rev. Lett. 85, 1544 (2000).

⁽b) Knapp, C.; Weiden, N.; Käss, H.; Dinse, K.-P.; Pietzak, B.; Waiblinger, M.; Weidinger, A. *Mol. Phys.* 95, 999 (1998).

β-распад

⁷Li+p→⁷Be+n

$$Li_2CO_3 + p + C_{60} \rightarrow Be@C_{60} + \dots$$

 $^{7}\text{Be+e} \rightarrow ^{7}\text{Li+}\gamma$

Период β-распада [*]

Host materials	$T_{1/2}$ (days)	References
C ₆₀	52.68 ± 0.05	This work
Beryllium metal	53.12 ± 0.05	This work
Lithium fluoride	53.12 ± 0.07	[5]
Graphite	53.107 ± 0.022	[8]
Boron nitride	53.174 ± 0.037	[8]
Tantalum	53.195 ± 0.052	[8]
Gold	53.311 ± 0.042	[8]

Электронная плотность[**]

	Orbitals								
	1st	2nd	Others	Total					
Be@C ₆₀	34.22	1.24	0.02	35.48					
Be atom	34.25	1.13	_	35.38					
Be metal	34.11	0.32	0.33	34.78					

[*] T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi and K. Ohno *Phys. Rev. Lett.* **93** 112501 (2004).

[8] E. B. Norman et al., *Phys. Lett. B* **519**, 15 (2001).

[**] E.V. Tkalya, A.V. Bibikov, and I.V. Bodrenko Phys, Rev. C 81, 024610 (2010).

ЭПР спектр Sc₃@C₈₂

✓22 эквидистантные линии Sc₃@C₈₂ говорят о геометрической эквивалентности трех атомов скандия

J. Am. Chem. Soc. 116, 9367; Phys. Rev. Lett. 73, 3415 (1994).

Phys. Rev. Lett. 83, 2214 (1999).

Phys. Rev. B 69, 113412 (2004).