Мир атомных ядер

ЯДЕРНЫЕ РЕАКЦИИ

Ядерные реакции $\alpha + \frac{197}{79} Au \rightarrow \alpha + \frac{197}{79} Au$ $\alpha + {}^{14}_{7}N \rightarrow {}^{17}_{8}O + p$ $\alpha + {}^{9}_{4}N \rightarrow {}^{12}_{6}C + n$ $\alpha + {}^{27}_{13}\text{Al} \rightarrow {}^{30}_{15}\text{P} + n$ $\stackrel{30}{_{15}} P \xrightarrow{\beta^+} T_{1/2} = 2,5 \text{ MUH} \longrightarrow \stackrel{30}{_{14}} Si$

Схема эксперимента, в котором исследовалось рассеяние альфа-частиц

Из опытов по рассеянию α-частиц следовало, что масса атома практически полностью сосредоточена в небольшой центральной части атома – атомном ядре.

1911 г.

Э. Резерфорд осуществил первую искусственную ядерную реакцию ¹⁴N(α,p)¹⁷O и доказал наличие в атомном ядре протонов.

Открытие нейтрона

1932 г.

$$\alpha + \frac{9}{4}Be \rightarrow n + \frac{12}{6}C$$

Нобелевская премия по физике 1935 г. – Дж.Чедвик За открытие нейтрона

Дж. Чадвик 1891 - 1974

Джон Кокрофт 1897-1967

Томас Уолтон 1903-1995

1932 г. Джон Кокрофт и Томас Уолтон пучком протонов расщепили ядра бора и лития

УСКОРИТЕЛИ

Движение частиц в электромагнитном поле

Электрическое поле

$$E_{\rm KHH} = q(\varphi_2 - \varphi_1)$$

Магнитное поле

$$T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$

Линейный ускоритель

1925 г. Г. Изинг Схема линейного ускорителя
1928 г. Р. Видероэ Дрейфовая трубка
1946 г. Л. Альварец, В. Панофски Беркли, США (*E*_{кин} (*p*)= 32 МэВ)

Циклотрон

1929 г. Э. Лоуренс предложил идею циклотрона

1932 г. *Е_{кин}* (**p**)= 1,2 МэВ (D = 25 cm)

 $\omega = \frac{\nu}{R} = \nu \frac{qB}{m\nu} = \frac{qB}{m}$

Максимальная кинетическая энергия протонов Е_{кин} (**p**)= 22 МэВ (1939 г.)

Принцип автофазировки

1944 г. В. Векслер , Принцип автофазировки **1945 г.** US patent 2615129, Edwin McMillan, «Synchro-Cyclotron», issued 1952-10-21

В.И. Векслер, Э. Макмиллан 1963 г.

Синхроциклотрон

1947 г. Синхротрон электроны 30 МэВ, ФИАН, Москва

1949 г. Фазотрон протоны 680 МэВ, Дубна, СССР

1953 г. Космотрон протоны 3,3 ГэВ, Беркли, США

1957 г. Синхрофазотрон Протоны 10 ГэВ Дубна, ОИЯИ

Синхрофазотрон

Объединенный институт ядерных исследований, Дубна, СССР

$E(p) = 10 \ \Gamma \Im B = 10^{10} \ \Im B$

Диаметр магнита 60 м вес магнита 36 000 т

ЗАКОНЫ СОХРАНЕНИЯ ВЯДЕРНЫХ РЕАКЦИЯХ

Сечение реакции с и число событий N $\frac{dN(\theta, \varphi)}{d\Omega} = j \cdot n \cdot l \cdot s \cdot \frac{d\sigma(\theta, \varphi)}{d\Omega}$ $N = j \cdot n \cdot l \cdot s \cdot \sigma$

- N число событий в секунду,
- *j* поток частиц а через 1 см² поверхности мишени,
- n число частиц b в 1 см³ мишени,
- s площадь мишени в см²,
- *l* толщина мишени в см,
- σ сечение реакции.

 $\frac{N}{cek} = \frac{j}{\frac{44000 \text{ частиц } a}{cek \times cm^2}} \frac{N}{cm^3} \frac{l}{|cm|} \frac{s}{|cm^2|} \sigma$

Законы сохранения в ядерных реакциях $a + A \rightarrow b + B$

a

b

A

- 1. Закон сохранения числа нуклонов
- 2. Закон сохранения электрического заряда
- 3. Закон сохранения энергии
- 4. Закон сохранения импульса

Энергия реакции Q

$$Q = (m_a + m_A - m_b - m_B)c^2$$

Порог реакции

$$E_{nopoe} = \frac{(m_a + m_A - m_b - m_B)(m_a + m_A + m_b + m_B)c^2}{2m_A}$$

 $E_{nopoe} = |Q| \left(1 + \frac{m_a}{m_A} + \frac{Q}{2m_A}\right)$

Законы сохранения момента количества движения Jи четности P $\vec{J}_a + \vec{J}_A + \vec{l}_{aA} = \vec{J}_b + \vec{J}_B + \vec{l}_{bB}$, \vec{J} – спины участвующих в реакции частиц и ядер, \vec{l} – их относительные орбитальные моменты количества движения.

Если налетающей частицей является фотон, то в левой части соотношения слагаемое относительного углового момента $\vec{l}_{\gamma A}$ отсутствует, так как этот момент автоматически учитывается мультипольностью фотона. Это же справедливо и для правой части соотношения, если реакция завершается вылетом фотона.

Сохранение чётности

$$P_a P_A (-1)^{l_{aA}} = P_b P_B (-1)^{l_{bB}}$$

В ядерных реакциях происходящих за счет слабых взаимодействий чётность не сохраняется.

Закон сохранения изоспина І

 $\vec{I}_a + \vec{I}_A = \vec{I}_b + \vec{I}_B.$

$(I_3)_a + (I_3)_A = (I_3)_b + (I_3)_B$

Изоспин сохраняется в сильных взаимодействиях. Проекция изоспина I_3 сохраняется в сильном и электромагнитном взаимодействиях.

МОДЕЛИ ЯДЕРНЫХ РЕАКЦИЙ

Составное ядро (механизм предложен Нильсом Бором в 1936 г.) Если реализуется вариант реакции через составное ядро, то энергия частицы-снаряда (И делится среди многих нуклонов ядра. Каждый из них имеет энергию недостаточную для вылета из ядра. Проходит много времени прежде чем в результате случайных соударений нуклонов на одном из них (или группе связанных нуклонов) сконцентрируется энергия достаточная для вылета из ядра и частица b вылетает из ядра: Составное ядро

Составное ядро

Вероятность образования составного ядра нейтроном определяется произведением вероятностей трёх последовательных процессов:

1) вероятности попадания нейтрона в область действия ядерных сил. Эффективное сечение этого процесса **о**;

2) вероятности *Р* проникновения нейтрона внутрь ядра;

3) вероятности **ξ** захвата нейтрона ядром.

$$\sigma_{nc} = \sigma_0 \cdot p \cdot \xi$$

Составное ядро

В классическом пределе сечение взаимодействия точечной частицы с мишенью радиуса *R* описывается величиной

$\boldsymbol{\sigma} = \boldsymbol{\pi} \boldsymbol{R}^2$

При переходе к квантовому описанию процесса взаимодействия нейтрона с ядром необходимо учесть, что налетающий нейтрон имеет длину волны $\hat{\lambda}_n$, которая зависит от энергии нейтрона *Е*

$$\hat{\lambda}_{n}(\Phi M) = \frac{4,5}{\sqrt{E(M \ni B)}}.$$
$$\sigma_{0} = \sigma_{eom} = \pi (R + \hat{\lambda}_{n})^{2}$$

Составное ядро

Важнейшей особенностью составного ядра является независимость процесса его распада от способа образования.

$$\sigma_{ab} = \sigma_{ac} W_b$$
 (*)

 σ_{aC} – сечение образования составного ядра частицей a, W_b – вероятность распада составного ядра (с вылетом частицы b). $\sum_b W_b = 1$.

Если ядерное состояние может распадаться с вылетом различных частиц, то полная ширина Г является суммой *парциальных ширин*

nco

$$\Gamma = \Gamma_a + \Gamma_{b'} + \Gamma_{b''} + \ldots = \Gamma_a + \sum_b \Gamma_b = \sum_i^{\text{occ}} \Gamma_i.$$

Учитывая то, что $W_b = \Gamma_b \, / \, \Gamma$, (*) можно записать в виде

$$\sigma_{ab} = \sigma_{aC} \frac{\Gamma_b}{\Gamma}.$$

Входной и выходной каналы реакции

Составное ядро ⁶⁴Zn

Формула Брейта-Вигнера

Сечения рассеяния нейтронов в районе изолированного уровня определяется формулой Брейта-Вигнера

$$\sigma_{nn} = \pi \lambda_n^2 \frac{\Gamma_n^2}{\left(E - E_r\right)^2 + \frac{\Gamma^2}{4}}$$

времени;

 $\frac{\Gamma_a}{\hbar}$, $\frac{\Gamma_b}{\hbar}$, $\frac{\Gamma_n}{\hbar}$ — вероятности распада уровня составного ядра в единицу времени с вылетом частиц а, b и нейтрона.

Суми уровня:

иа всех парциальных ширин
$$\Gamma_a, \Gamma_b, \Gamma_n, ... даёт полную ширину$$

$$\Gamma = \Gamma_a + \Gamma_b + \Gamma_n + \dots$$

Г – ширина уровня на половине высоты.

$(113 \circ 1) \circ (104)$

 $\sigma \sim \frac{1}{\sqrt{E}}$

$$\sigma \left(\begin{smallmatrix} 115\\48 \end{smallmatrix} \right) = 2,6 \cdot 10^{\circ}$$
 барн
 $\sigma \left(\begin{smallmatrix} 135\\54 \end{smallmatrix} \right) = 3,5 \cdot 10^{\circ}$ барн

Какие причины делают составное ядро долгоживущим?

Во-первых, из-за короткодействия ядерных сил движение нуклонов в ядре может быть сильно запутанным. Вследствие этого энергия влетевшей в ядро частицы быстро перераспределяется между всеми частицами ядра. В результате часто оказывается, что ни одна частица уже не обладает энергией, достаточной для вылета из ядра. В этом случае ядро живет до флуктуации, при которой одна из частиц приобретает достаточную для вылета энергию.

Во-вторых, малая проницаемость кулоновского барьера для заряженных частиц на несколько порядков уменьшает вероятность вылета протонов из средних и тяжелых ядер.

В-третьих, вылет частиц из составного ядра может затрудняться различными правилами отбора.

В-четвертых, в реакциях с испусканием *γ*-квантов, на средних и тяжелых ядрах в ядре происходит сильная перестройка структуры при испускании *γ*-кванта. Время перестройки значительно превышает характерное ядерное время 10⁻²² с.

Реакции срыва и подхвата

Примером прямых реакций являются реакции срыва и подхвата (*d*, *p*), (*d*, *n*), (*p*, *d*), ($_{2}^{3}$ He,*α*), (*d*, *t*) и т. д. Эти реакции называют также *реакциями однонуклонной передачи*, так как в них налетающая частица и ядро-мишень обмениваются одним нуклоном.

1**P**

1S

30 МэВ

40 МэВ

Реакции (р,2р)

Взаимодействие у-квантов с ядрами

При небольших энергиях γ -квантов $E_{\gamma} < 5 \div 10$ МэВ в сечении реакции наблюдаются чётко выраженные резонансы, соответствующие возбуждению отдельных уровней ядра. В области энергий $E_{\gamma} \approx 10 \div 40$ МэВ в ядре возбуждается гигантский дипольный резонанс, который можно интерпретировать как колебания протонов относительно нейтронов под действием электромагнитной волны. В результате поглощения γ -кванта из возбужденного состояния ядра испускаются протоны и нейтроны. При энергиях $E_{\gamma} > 100$ МэВ γ -кванты взаимодействуют с отдельными нуклонами ядра. При этом образуются возбужденные состояния нуклона — Δ и N-резонансы, распадающиеся с испусканием π -мезонов.

Реакции (ү,р), (ү,п) на ядре ⁹⁰40²г

Ядерные реакции

ВХОДНОЙ И ВЫХОДНОЙ КАНАЛЫ РЕАКЦИИ

Формула Резерфорда

Рассеяние точечной заряженной частицы на точечном объекте

- *z*₁ заряд налетающей частицы,

- *z*₂ заряд рассеивающей частицы,

Е - энергия налетающей частицы,

 θ - угол рассеяния налетающей частицы.

Упругое рассеяние электрона на ядрах. Формула Мотта

- 1. Электрон обладает спином ($s_e = 1/2$).
- 2. Энергия налетающего электрона может быть сравнима или даже превосходить энергию покоя рассеивающей частицы.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{MOTT}} = \left(\frac{Ze^2}{2E}\right)^2 \frac{1}{\sin^4\theta/2} \frac{\cos^2\theta/2}{\left(1 + \frac{2E\sin^2\theta/2}{mc^2}\right)},$$

- **Z** атомный номер ядра,
- Е энергия налетающего электрона,
- heta угол рассеяния электрона,
- т масса ядра,
- q переданный ядру четырех-импульс.

$$q^{2} = (E_{i} - E_{f})^{2} / c^{2} - (\vec{p}_{i} - \vec{p}_{f})^{2},$$

*E*_i, *E*_f, \vec{p}_i , \vec{p}_f — энергии и импульсы рассеиваемого электрона в начальном и конечном состояниях.

Формфактор ядра

Распределение зарядов в ядре описывается с помощью формфактора *F*(*q*²). Формфактор описывает отклонение размера ядра от точечного.

Для упругого рассеяния формфактор зависит только от квадрата переданного импульса q^2 и связан с плотностью распределения ядерной материи $\rho(r)$ соотношением

 $\left(\frac{d\sigma}{d\Omega}\right)_{\rm Mer} = \left|F(q^2)\right|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mer}$

$$F(q^2) = \int \rho(r) e^{i\vec{q}\vec{r}/\hbar} dr \tag{*}$$

Зависимость формфактора от q² отражает тот факт, что с увеличением величины квадрата переданного импульса q² уменьшается длина волны виртуального фотона, что приводит к увеличению пространственного разрешения эксперимента.

Зарядовые распределения и соответствующие им формфакторы

Распределение заряда $ ho(r)$		Формфактор $F(ec{q}^2)$		
точечное <i>б</i> (<i>r</i>)		1	константа	
экспоненциальное $ ho_0 e^{-rac{r}{a}}$		$\left(1+\frac{\vec{q}^2a^2}{\hbar^2}\right)^{-2}$	дипольный	
Гауссово $ ho_0 e^{-\left(rac{r}{a} ight)}$ однородная сфера: $ ho_0$ при	$r \leq R$,	$e^{-\frac{\vec{q}^2 a^2}{4\hbar^2}}$ $\frac{3}{\alpha^3}(Sin\alpha - \alpha Cos\alpha),$	Гауссов осциллирующий,	
0 при /	r > R	где $lpha = \left ec{q} ight R / \hbar$		

ρ₀ — плотность ядерной материи в центре ядра,

R — радиус ядра — расстояние, на котором плотность ядерной материи спадает в два раза, *a* — параметр диффузности (спад плотности от 0.9 ρ₀ до 0.1 ρ₀).

СТОЛКНОВЕНИЯ РЕЛЯТИВИСТСКИХ ИОНОВ

Встречные пучки

$$a + b \rightarrow M$$
$$(E_a + E_b)^2 - (\vec{p}_a + \vec{p}_b)^2 = M^2$$
$$E^2 - p^2 = M^2$$

$$E_a = \frac{2E^{*2}}{m} - m$$

Встречные пучки

$$E_a = \frac{2E^{*2}}{m} - m$$

Большой адронный коллайдер (LHC): **р + р**

$$E^* = 7 \operatorname{T}_{\Im}B = 7 \cdot 10^3 \operatorname{\Gamma}_{\Im}B \implies$$

$$E_a \approx \frac{2 \cdot 49 \cdot 10^6 \operatorname{\Gamma}_{\Im}B^2}{1 \operatorname{\Gamma}_{\Im}B} - 1 \operatorname{\Gamma}_{\Im}B =$$

$$= 10^8 \operatorname{\Gamma}_{\Im}B = 10^5 \operatorname{T}_{\Im}B = 10^{17} \operatorname{\Im}B$$

Встречные пучки

Коллайдер	Лабор.	Пучки	Энергия (max)	Светимость, см ⁻² сек ⁻¹	Периметр, км
LEP	CERN	$e^{+} + e^{-}$	104,5 + 104,5 (ГэВ)	10 ³²	26,7
HERA	DESY	$e^- + p$	27,5 + 920 (ГэВ)	0,75×10 ³²	6,3
RHIC	BNL	p + p Au+Au	250 +250 (ГэВ) 100 + 100 (ГэВ/и)	1,6×10 ³² 30×10 ²⁶	3,8
TEVATRON	FNL	$p + \bar{p}$	980 +980 (ГэВ)	4×10 ³²	6,86
LHC	CERN	p + p Pb+Pb	7 +7 (TэB) 2,8 +2,8 (TэB/ u)	10 ³⁴	26,7
унк	Протвино	p + p	3 + 3 (ТэВ)	Cancelled 1992	21
SSC	Texas	p + p	20 + 20 (ТэВ)	Cancelled 1993	80

(CÉRN

CERN - ЦЕРН

Европейская организация ядерных исследований

Ускорительный комплекс ЦЕРН

Start the protons out here

Длина тоннеля – 27 км

Детектор ATLAS

Courtesy CMS/CERN

Столкновения ионов свинца Pb + Pb

