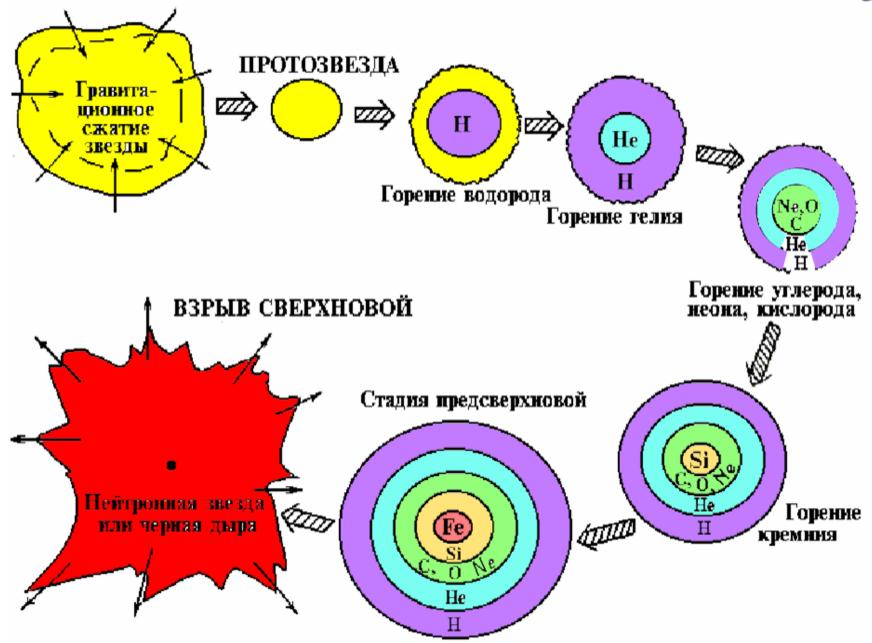
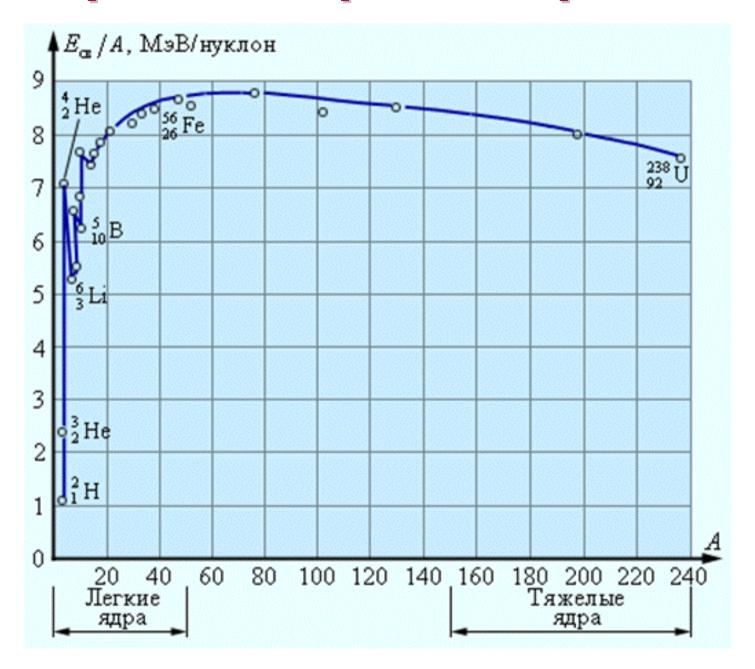


Мир атомных ядер


ЗВЕЗДНЫЙ НУКЛЕОСИНТЕЗ

Образование тяжелых элементов


Ядерные реакции синтеза в звёздах различной массы

Macca, M _⊙	Возможные ядерные реакции
0.08	Нет
0.3	Горение водорода
0.7	Горение водорода и гелия
5.0	Горение водорода, гелия,
25.0	углерода Все реакции синтеза с выделением энергии

Эволюция массивной звезды $M > 25 \ M_{\odot}$

Предел термоядерного синтеза

удельная энергия связи атомных ядер

Распространенность нуклидов во

Распространенность Si принята равной 10⁶.

s – процесс

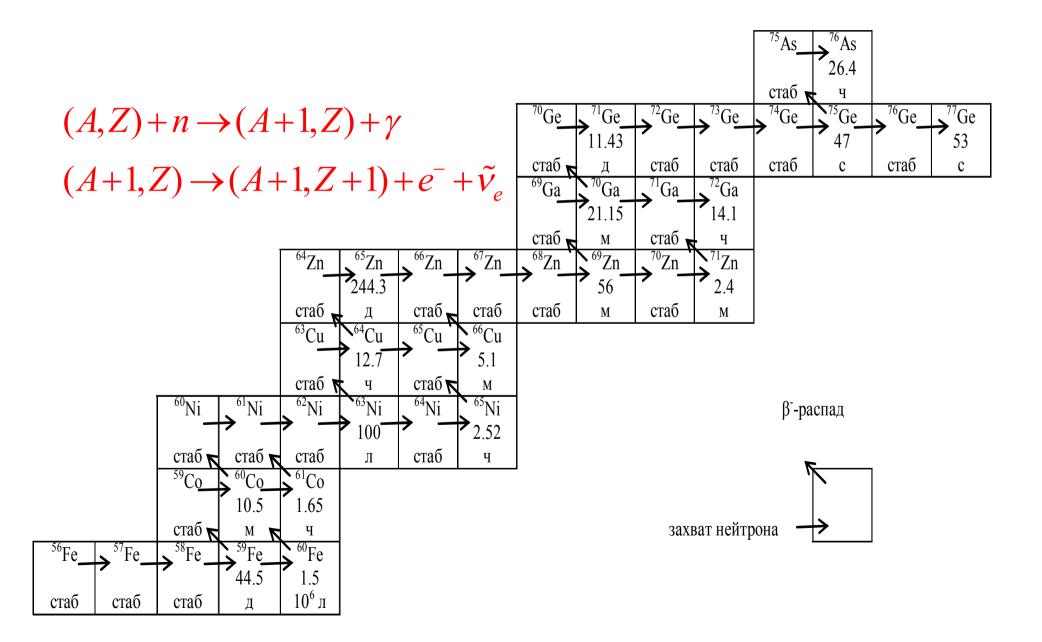
s – процесс

Для образования тяжёлых элементов решающую роль играет захват ядрами нейтронов – реакция (n, γ) :

$$(A, Z) + n \rightarrow (A+1, Z) + \gamma$$
.

Если образовавшееся в результате захвата нейтрона ядро (A+1, Z) нестабильно, то при малых плотностях нейтронов β^- -распад этого ядра

$$(A+1, Z) \rightarrow (A+1, Z+1) + e^- + \overline{V}_e$$


более вероятен, чем захват им следующего нейтрона.

$$au_{n\gamma}\gg au_{eta}$$

 $\mathcal{T}_{n\gamma}$ — время жизни ядра до захвата нейтрона. Такой процесс называют медленным или s-процессом (от англ. slow).

Характерные значения ${\mathcal T}_{n\gamma}$ – годы.

s – процесс

Нейтроны для s - процесса

Подходящие условия для образования ядер в *s*-процессе существуют в красных гигантах. Источником нейтронов для *s*-процесса являются реакции

$$^{13}C + \alpha \rightarrow ^{16}O + n$$
 $^{13}C + \alpha \rightarrow ^{25}Mg + n$.

Для первой реакции требуются условия, при которых происходит совместное горение водорода и гелия. В качестве механизма, создающего такие условия, рассматривается соприкосновение конвективной оболочки звезды, в которой происходит горение гелия, с богатой водородом внешней оболочкой. Образование нейтронов происходит в следующей цепочке реакций:

$$^{12}C + p \rightarrow ^{13}N + 1.94$$
 МэВ, $^{13}N \rightarrow ^{13}C + e^{+} + v_{e} + 1.20$ МэВ ($T_{1/2} = 10$ мин), $^{13}C + \alpha \rightarrow ^{16}O + n + 2.22$ МэВ.

Реакция $^{13}C + \alpha \rightarrow ^{16}O + n$ эффективно происходит при $T > 10^8$ К.

Нейтроны для s - процесса

Образование нейтронов в реакции

$$^{22}\text{Ne} + \alpha \rightarrow ^{25}\text{Mg} + n \ (Q = -0.48 \text{ M} \circ \text{B})$$

зависит от наличия ^{14}N в зоне горения гелия. Источником ядер ^{14}N является CNO-цикл.

14
N + $\alpha \rightarrow ^{18}$ F + 4,4 MэВ
 18 F + $\alpha \rightarrow ^{22}$ Na + 8,5 MэВ
 22 Na $\rightarrow ^{22}$ Ne + e^+ + v ($T_{1/2}$ = 2,6 лет)
 22 Ne + $\alpha \rightarrow ^{25}$ Mg + n + 0,1 МэВ

Ещё одним источником нейтронов с необходимой плотностью при $T \approx 10^8$ К могут быть фотонейтронные реакции:

$$^{13}\text{C} + \gamma \rightarrow ^{12}\text{C} + n - 4.95 \text{ M} \rightarrow \text{B},$$

 $^{13}\text{N} + \gamma \rightarrow ^{12}\text{N} + n - 10.55 \text{ M} \rightarrow \text{B}.$

Роль фотонейтронных реакций растет с увеличением температуры.

r – процесс

r - процесс

Если плотности нейтронов ρ_n достигают значений $10^{19} \div 10^{20} \text{ см}^{-3}$, то время жизни ядра до захвата нейтрона τ_{nv} снижается до $\approx 10^{-3} \text{ с}$

$$1/\tau_{n\gamma} = \rho_n \cdot \upsilon_n \cdot \sigma_{n\gamma}$$

Выполняется условие

$$\tau_{n\gamma} \ll \tau_{\beta}$$

Скорость захвата ядром нейтрона во много раз превышает скорость его β -распада. Захват нейтронов происходит до тех пор, пока скорость реакции (n, γ) не станет меньше скорости β -распада изотопа. При этом ядро успевает захватить 10-20 нейтронов прежде чем испытает β -распад. Такой процесс называют быстрым или r-процессом (от англ. rapid).

r - процесс

Необходимые для r-процесса плотности нейтронов возникают при взрывах Сверхновых. Расходящаяся ударная волна примерно за 0,5 с создаёт в оболочке горения гелия условия для интенсивного протекания реакции генерации нейтронов $^{22}\mathrm{Ne}(\alpha,n)^{25}\mathrm{Mg}$ и тем самым запускает r-процесс.

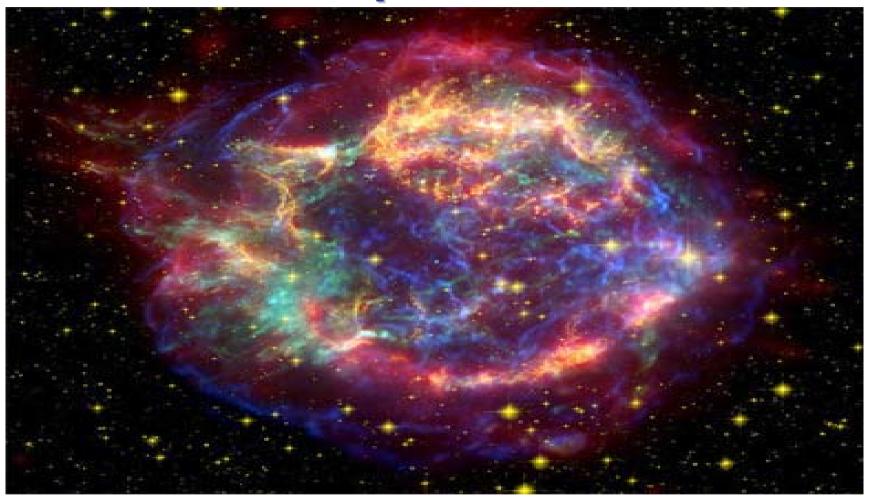
Этот механизм образования элементов называют взрывным нуклеосинтезом. *г*-процесс может протекать и в насыщенных нейтронами ядрах Сверхновых. В этом случае вынос образованных элементов в поверхностные слои звезды, осуществляется за счёт разогретых нейтрино участков звезды.

Взрыв Сверхновой

Фоторасщепление железа

При температуре 5·10⁹ К существенную роль начинают играть реакции фоторасщепления железа на нейтроны, протоны и ядра гелия. Эти реакции протекают с поглощением энергии. Начинается охлаждение центральной части звезды.

56
 Fe → 13^{4} He + $4n - 124$, 4 M₃B


Нейтронизация вещества

Наряду с процессом фоторасщепления железа существенную роль начинают играть процессы, происходящие в результате слабого взаимодействия, которые также приводят к охлаждению центральной части звезды. Энергию из центральной части звезды уносят нейтрино:

$$(A,Z) + e^{-} \rightarrow (A,Z-1) + \nu_{e}$$
$$p + e^{-} \rightarrow n + \nu_{e}$$

Происходит обогащение элементов центральной части звезды нейтронами. Этот процесс называется нейтронизацией вещества.

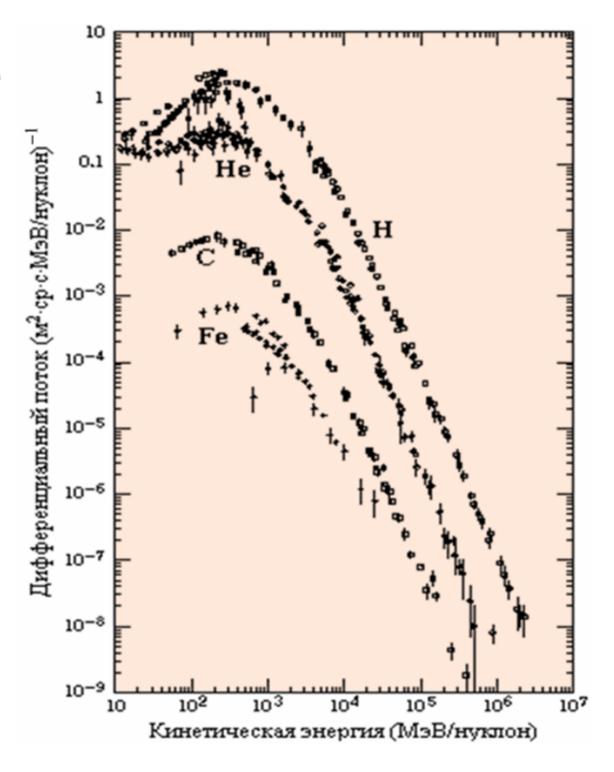
Сверхновая

Инфракрасный снимок остатка вспышки сверхновой в созвездие Кассиопея, которая произошла приблизительно 500 лет назад. Это самый молодой остаток от взрыва Сверхновой, известный в нашей галактике.

Космическое излучение

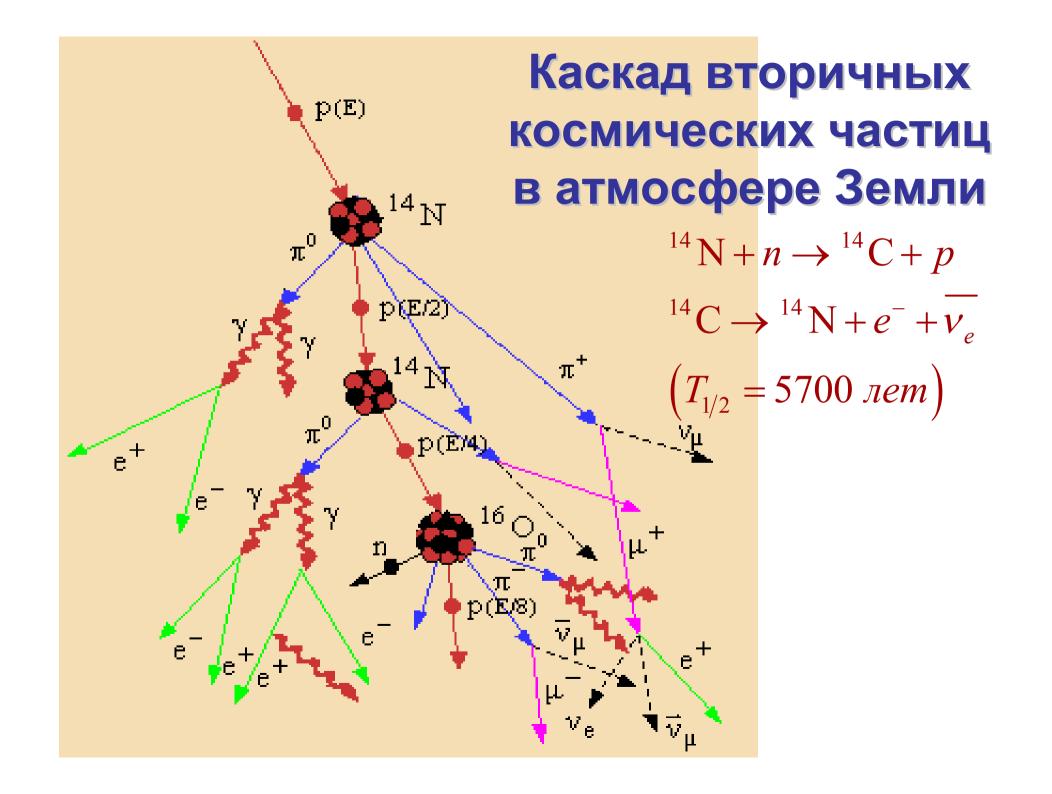
В. Гесс (1883-1964)

1912 г. — Космические лучи открыты В. Гессом с помощью ионизационной камеры, установленной на воздушном шаре.


Нобелевская премия по физике 1936 г. — В. Гесс За открытие космического излучения

Первичные космические лучи

	Галактические	Солнечные
	космические лучи	космические лучи
Поток	≈ 1 cm ⁻² ·c ⁻¹	Во время солнечных вспышек может достигать ≈10 ⁶ см ⁻² ⋅с ⁻¹
	1. Ядерная компонента	
	(≈90% протонов, ≈10% ядер гелия,	
Состав	»1% более тяжелых	98–99% протоны,
	ядер),	≈1.5% ядра гелия
	2. Электроны (≈1% от числа ядер),	
	3. Позитроны (≈10% от	
	числа электронов),	
	4. Антиадроны (< 0.01%)	
Диапазон энергий	10 ⁶ -10 ²¹ эВ	10 ⁵ -10 ¹¹ эВ


Космические лучи

Х-процесс

Изотопы Li, Be, B образуются в реакциях расщепления (скалывания) при взаимодействии галактических космических лучей с веществом межзвёздной среды:

- 1) лёгкая компонента космических лучей (быстрые протоны и α-частицы) в результате столкновения с тяжёлыми ядрами межзвёздной среды вызывает расщепление их с образованием изотопов Li, Be, B, которые затем смешиваются с межзвёздной средой;
- 2) быстрые ядра C, N, O, входящие в состав космического излучения, сталкиваясь с ядрами H и He, превращаются в Li, Be, B.

Ядерные реакции в звездах

• Горение водорода. СОО-цикл

$$4p \rightarrow 4He + 2e^+ + 2v_e$$

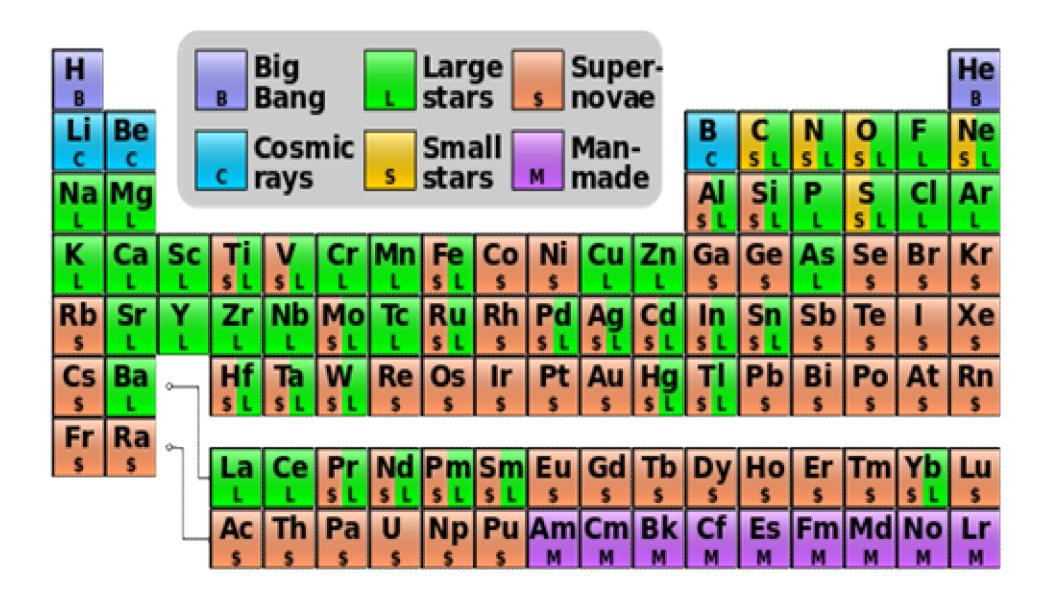
• Горение гелия.

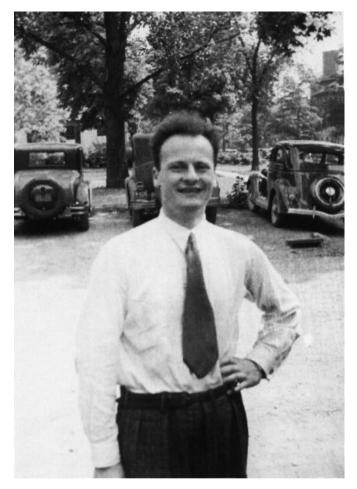
$$3\alpha \to {}^{12}\text{C}, {}^{16}\text{O}, {}^{20}\text{Ne}$$

α-процесс. Образование A/α-ядер

$$A + \alpha + \alpha + \alpha + \ldots \rightarrow N\alpha$$
 -ядра

- Е-процесс. Образование ядер в районе железного максимума в условиях термодинамического равновесия.
- s-процесс. Захват нейтронов происходит медленнее (slow), чем β-распад в последовательности процессов


$$(A,Z) + n \rightarrow (A+1,Z) \rightarrow (A+1,Z+1) + e^{-} + \tilde{v}$$

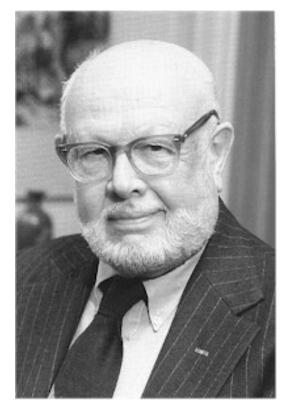

 r-процесс. . Захват нейтронов происходит быстрее (rapid), чем β-распад в последовательности процессов

$$(A,Z) + Nn \rightarrow (A+N,Z) \rightarrow (A+N,Z+N) + Ne^- + N\tilde{\nu}$$

- р-процесс. Реакции образования лёгких изотопов химического элемента $(p,n)\,(p,\gamma)\,(\gamma,n)\,(\gamma,2n)$
- x-процесс. Реакции под действием космических лучей. Li, Be, B.

Происхождение элементов

Hans Albrecht Bethe (1906-2005)


1938 г. —

Ганс Бете (Hans Bethe) и Чарльз Критчфильд (Charles Critchfield) открыли протон-протонный цикл термоядерных реакций как источник энергии звезд.

Ганс Бете (Hans Bethe) и Карл фон Вайцзеккер (Carl von Weizsacker) открыли углеродно-азотный цикл термоядерных реакций.

Нобелевская премия по физике 1967 г. — Г. Бете

За вклад в теорию ядерных реакций, и особенно за открытие источника энергии звезд.

William Alfred Fowler (1911-1995)

Для определения эффективности ядерных реакций в звездах обычно проводится экстраполяция результатов измерений при больших энергиях в область энергий несколько кэВ. Большое число очень тщательных экспериментов было выполнено под руководством В. Фаулера.

Нобелевская премия по физике

1983 г. — В. Фаулер

За теоретические и экспериментальные исследования ядерных процессов важных при образовании химических элементов во Вселенной.

ЗАВЕРШАЮЩИЕ СТАДИИ ЭВОЛЮЦИИ ЗВЕЗД

Диаграмма Герцшпрунга-Рассела

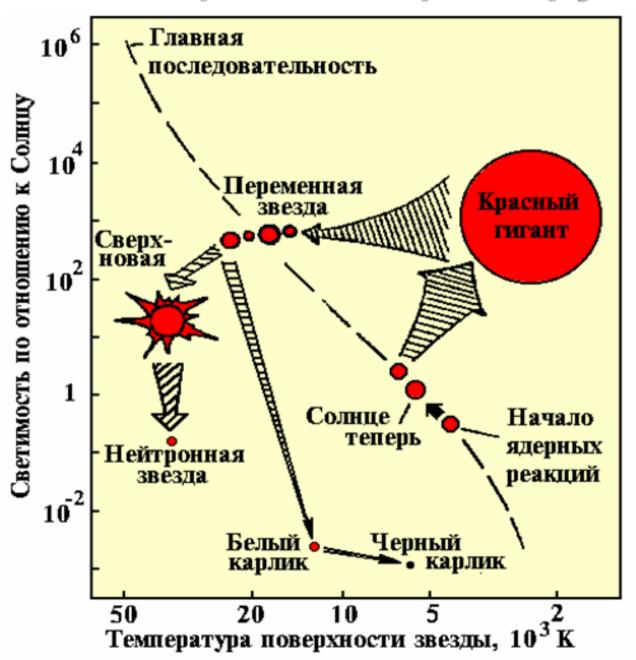
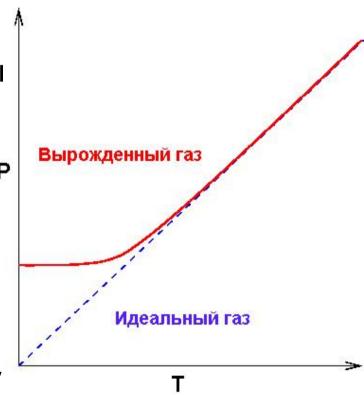


диаграмма эволюции звезд

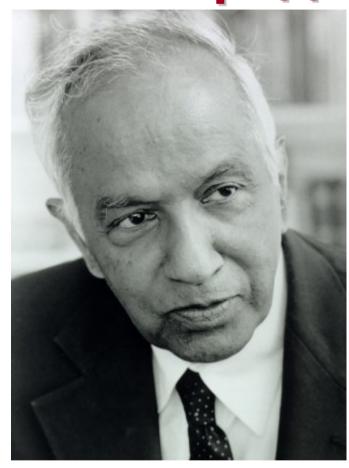
Белые карлики

Белые карлики


Белые карлики –компактные звезды с массой, сравнимой с массой Солнца, их радиус примерно в 100 раз меньше радиуса Солнца. Поэтому плотность вещества белого карлика р≈10⁶ г/см³, что примерно в миллион раз больше плотности обычных звезд. Белые карлики образуются из звезд с массой в несколько раз превышающих массу Солнца после сброса внешней оболочки, окружающей плотное ядро звезды.

Белый карлик образуется благодаря устойчивому равновесию сил гравитации и давления вырожденного релятивистского электронного газа. Давление электронного газа имеет квантовую природу. Оно возникает как следствие принципа Паули и соотношения неопределенности. Принцип Паули определяет предельный минимальный объем пространства, который может занимать каждый электрон. Внешнее давление не в состоянии этот объем уменьшить.

Белые карлики


$$\Delta p \cdot \Delta x \approx \hbar$$

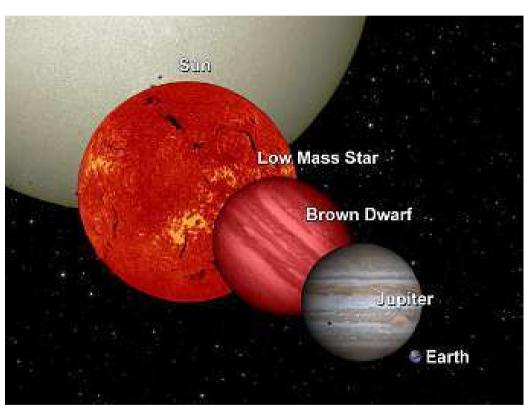
При достаточно большой массе звезды гравитационное давление будет больше давления релятивистского электронного газа, однако существует критическое значение массы звезды $M_{\rm kp}$, в плотном веществе звезды из-за действия принципа Паули возникает давление электронного газа, которое может противостоять гравитационному сжатию звезды.

Это критическое значение массы $M_{\rm kp} = 1.44~M_{\odot}$ называют Чандрасекаровским пределом.

Предел Чандрасекара

Subramanyan Chandrasekhar (1910-1995)

Чандрасекаровский предел


$$M_{\rm kp} = 1.44 \, M_{\odot}$$

Нобелевская премия по физике

1983 — С. Чандрасекар За теоретические исследования физических процессов, важных для структуры и эволюции звезд.

Коричневые карлики

$$^{2}_{1}D + ^{2}_{1}D \rightarrow ^{4}_{2}He \quad 4p \Rightarrow ^{4}_{2}He + 2e^{+} + 2\nu_{e}$$

Объект малой массы $(M < 0.08 M_{\odot})$, в котором не горит водород в ядре из-за малой температуры. Температура поверхности около 1000 К. Светимость $I/I_{\odot} \sim 10^{-4}$ - 10^{-5} Коричневые

L/L_⊙~10⁻⁴-10⁻⁵. Коричневые карлики излучают энергию за счет медленного сжатия ядра. Время излучения примерно 15 млн. лет.

Гравитационное равновесие поддерживается вырожденным электронным газом, давление которого не позволяет звезде коллапсировать.

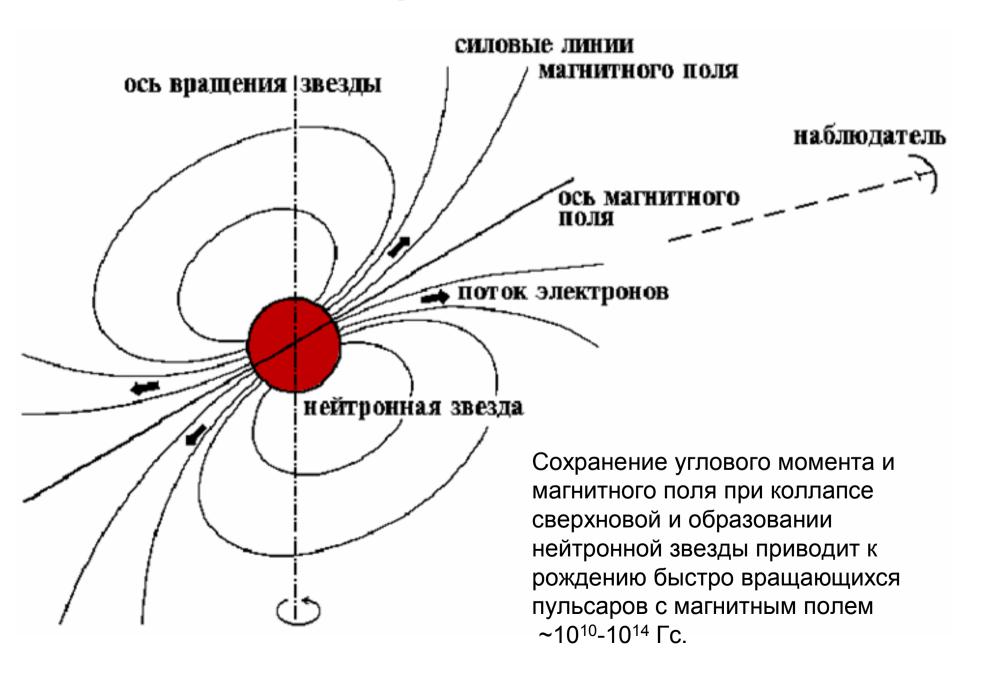
Нейтронные звезды

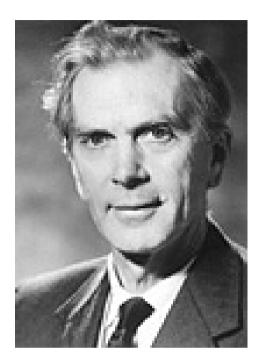
Нейтронные звезды

Нейтронная звезда образуется как остаток сверхновой после выброса нейтрино. Она имеет ядерную плотность (10^{14} - 10^{15} г/см³) и типичный радиус 10-20 км. Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов. Это давление вырожденного нейтронного газа в состоянии удерживать от гравитационного коллапса массы вплоть до $3M_{\odot}$.

Массы нейтронных звезд изменяются в пределах

$$(1, 4 \div 3) M_{\odot}$$


Нейтрино, образующиеся в момент коллапса сверхновой, быстро охлаждают нейтронную звезду. Её температура падает с 10¹¹ до 10⁹ К за время около 100 с. Дальше темп остывания нейтронной звезды уменьшается. Уменьшение температуры с 10⁹ до 10⁸ К происходит за 100 лет и до 10⁶ К – за миллион лет.


Нейтронная звезда массой 1.5 M_{\odot} и радиусом R=16 км. Указана плотность ρ в г/см³ в различных частях звезды.

- внешний слой из плотно упакованных атомов;
- II кристаллическая решётка атомных ядер и вырожденных электронов;
- III твёрдый слой из атомных ядер, перенасыщенных нейтронами;
- IV жидкое ядро, состоящее в основном из вырожденных нейтронов;
- V адронная сердцевина нейтронной звезды кроме нуклонов должна содержать пионы и гипероны.

Пульсары

Пульсары

Sir Martin Ryle (1918-1984)

Antony Hewish p. 1924

Нобелевская премия по физике

1974 г. — М. Райл и Э. Хьюиш

За пионерские исследования в радиоастрофизике.

Райл - за результаты научных наблюдений и изобретения, в частности метода апертурного синтеза.

Хьюиш - за его определяющую роль в открытии пульсаров.

Пульсары

Russell A. Hulse p. 1950

p. 1941

Нобелевская премия по физике **1993 г.** — Р. Халс, Дж. Тейлор-мл.

За открытие нового типа пульсаров, давшее новые возможности в изучении гравитации.

В 1974 г. Дж. Тейлор и Р. Халс обнаружили пару нейтронных звезд, вращающихся друг относительно друга с периодом 3 ч 45 мин. Одна из нейтронных звезд являлась радиоизлучающим пульсаром. Пульсар вращался вокруг своей оси со стабильной угловой скоростью и поэтому служил исключительно точными часами. Благодаря этому стало возможно точно измерить массы обеих звезд и рассчитать Joseph H. Taylor Jr. характер их орбитального движения. Оказалось, что период обращения этой двойной системы уменьшается на 70 мкс в год, что хорошо согласуется с предсказаниями общей теории относительности. Сокращение периода обращения двойной звездной системы обусловлено гравитационным излучением.

Черные дыры

Черные дыры

1939 г. Р. Оппенгеймер, Г.Снайдерс

$$rac{mv^2}{2} = Grac{mM}{r}$$
 $R_{ ext{rpaB}} = rac{2GM}{c^2}$
 $R_{ ext{rpaB}} ext{(Солнце)} = 3 ext{ км}$
 $R_{ ext{rpaB}} ext{(Земля)} = 1 ext{ см}$

Реликтовые черные дыры Сверхмассивные черные

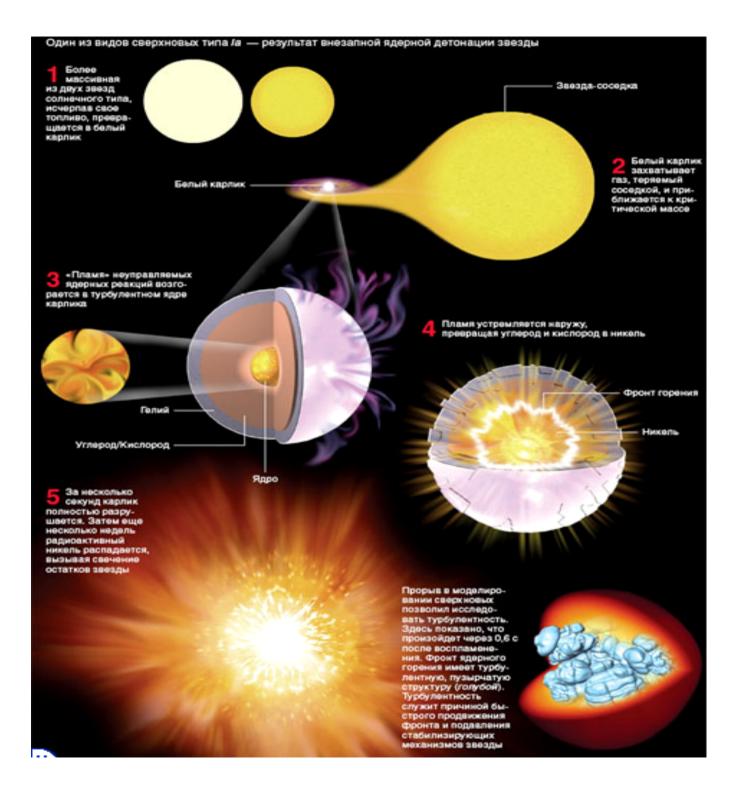
дыры
$$(M = 10^5 \div 10^{10} \, M_{\odot})$$

1974 г. С. Хокинг. Излучение черных дыр

$$T_H = 10^{-7} \, (M_{\odot}/M)$$

$$t_{\text{испар}}(M_H = 10M_{\odot}) = 10^{69} \text{ лет}$$

$$t_{\text{испар}}(M_H = 10^9 \,\text{г}) = 0.1 \,\text{c}$$


Предел Оппенгеймера-Волкова

Если действию гравитации в звезде противостоит давление вырожденных нейтронов (нейтронная звезда), можно получить аналогичную предельную массу для нейтронной звезды (ее называют пределом Оппенгеймера-Волкова, (Oppenheimer, Volkoff) которые в 1939 году рассмотрели строение простейшей нейтронной звезды, состоящей только из вырожденных нейтронов). Современные оценки предела Оппенгеймера — Волкова лежат в пределах 2,5—3 М_о.

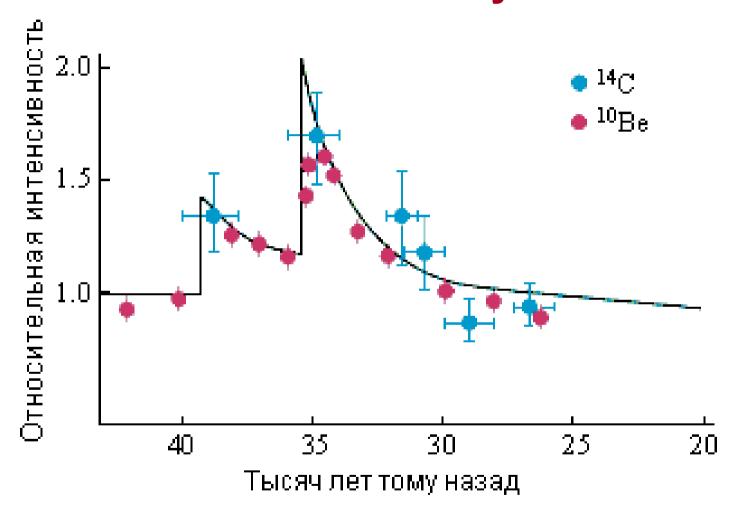
Самая массивная (из открытых к настоящему времени) нейтронная звезда J0348+0432 имеет массу **2,04** солнечных масс.

Самая маломассивная (из известных) чёрная дыра это — XTE J1650-500, она была открыта в 2001 году. Исследования показали, что её масса составляет 3,8±0,5 солнечной массы.

Взрыв Сверхновой


Сверхновая SN 1987A

Сверхновая SN 1987A


В 1987 г. в одной их ближайших галактик — Большом Магеллановом облаке, отстоящей от нашей галактики на 170000 световых лет, произошел взрыв Сверхновой SN1987A. Оболочка Сверхновой выброшена взрывом со скоростью в несколько десятков тысяч километров в секунду. На её месте наблюдался голубой гигант массой $16 M_{\odot}$ (снимок справа). Нейтринные детекторы зарегистрировали 25 нейтрино от взрыва. Длительность нейтринного сигнала составляла 25 секунд. Средняя энергия нейтрино ~20 МэВ. Полная энергия, унесенная при взрыве Сверхновой SN1987A оценивается $\sim 3 \cdot 10^{53}$ эрг.

Сверхновая SN 1987A

На снимке, полученном космическим телескопом Хаббла (HST) изображен остаток от взрыва сверхновой SN 1987A, расположенный в Большом Магеллановом Облаке спустя 12 лет после вспышки. После взрыва сверхновой около образовались три газовых кольца. В красном свете излучают нагретые взрывом ионизированный азот и водород. Кольца образовались под действием ударной волны, распространяющейся со скоростью более 50 млн. км в час.

Временная зависимость интенсивности космических лучей

Увеличение интенсивности космических лучей связывают с взрывом Сверхновой, близкой к Солнечной системе (около 200 световых лет).