Экологические проблемы энергетического обеспечения человечества

Введение. Энергия – проблемы роста потребления

    Энергетический кризис – явление, возникающее, когда спрос на энергоносители значительно выше их предложения. Его причины могут находиться в области логистики, политики или физического дефицита.

    Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продол­жительности и улучшения условий его жизни.
    История цивилизации – история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.
    Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV веку средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, – оно возросло в 30 раз и достигло в 1998 г. 13.7 Гигатонн условного топлива в год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек.
    В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.
    В то же время энергетика – один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).
    Несмотря на отмеченные факторы отрицательного воздействия энергетики на окружающую среду, рост потребления энергии не вызывал особой тревоги у широкой общественности. Так продолжалось до середины 70-х годов, когда в руках специалистов оказались многочисленные данные, свидетельствующие о сильном антропогенном давлении на климатическую систему, что таит угрозу глобальной катастрофы при неконтролируемом росте энергопотребления. С тех пор ни одна другая научная проблема не привлекает такого пристального внимания, как проблема настоящих, а в особенности предстоящих изменений климата.
    Считается, что одной из главных причин этого изменения является энергетика. Под энергетикой при этом понимается любая область человеческой деятельности, связанная с производством и потреблением энергии. Значительная часть энергетики обеспечивается потреблением энергии, освобождающейся при сжигании органического ископаемого топлива (нефти, угля и газа), что, в свою очередь, приводит к выбросу в атмосферу огромного количества загрязняющих веществ.
    Такой упрощенный подход уже наносит реальный вред мировой экономике и может нанести смертельный удар по экономике тех стран, которые еще не достигли необходимого для завершения индустриальной стадии развития уровня потребления энергии, в том числе России. В действительности все обстоит гораздо сложнее. Помимо парникового эффекта, ответственность за который, частично лежит на энергетике, на климат планеты оказывает влияние ряд естественных причин, к числу важнейших из которых относятся солнечная активность, вулканическая деятельность, параметры орбиты Земли, автоколебания в системе атмосфера-океан. Корректный анализ проблемы возможен лишь с учетом всех факторов, при этом, разумеется, необходимо внести ясность в вопрос, как будет вести себя мировое энергопотребление в ближайшем будущем, действительно ли человечеству следует установить жесткие самоограничения в потреблении энергии с тем, чтобы избежать катастрофы глобального потепления.

Современные тенденции развития энергетики


 Рис. 5.37. Мировое потребление коммерческой энергии Е и численность населения Р во второй половине XX столетия
    Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие.
    Коммерческие источники
энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная на ядерных, гидро-, ветровых, геотермальных, солнечных, приливных и волновых станциях).
    К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).
    Мировая энергетика в целом на протяжении всей индустриальной фазы развития общества основана преимущественно на коммерческих энергоресурсах (около 90% общего потребления энергии). Хотя следует отметить, что существует целая группа стран (экваториальная зона Африки, Юго-Восточная Азия), многочисленное население которых поддерживает свое существование почти исключительно за счет некоммерческих источников энергии.
    Различного рода прогнозы потребления энергии, базирующиеся на данных за последние 50-60 лет предполагают, что примерно до 2025 г. ожидается сохранение современного умеренного темпа роста мирового потребления энергии – около 1.5% в год и проявившая себя в последние 20 лет стабилизация мирового душевого потребления на уровне 2.3-2.4 т усл.топл./(чел.-год). После 2030 г. по прогнозу начнется медленное снижение среднемирового уровня душевого потребления энергии к 2100 г. При этом общее потребление энергии обнаруживает явную тенденцию к стабилизации после 2050 г. и даже слабого уменьшения к концу века.
    Одним из важнейших факторов, учитывавшихся при разработке прогноза, является обеспеченность ресурсами мировой энергетики, базирующейся на сжигании ископаемого органического топлива.
    В рамках рассматриваемого прогноза, безусловно, относящегося к категории умеренных по абсолютным цифрам потребления энергии, исчерпание разведанных извлекаемых запасов нефти и газа наступит не ранее 2050 г., а с учетом дополнительных извлекаемых ресурсов – после 2100 г. Если принять во внимание, что разведанные извлекаемые запасы угля значительно превосходят запасы нефти и газа, вместе взятые, то можно утверждать, что развитие мировой энергетики по данному сценарию обеспечено в ресурсном отношении более чем на столетие.
    Вместе с тем, результаты прогнозов дают значительный разброс, что хорошо видно из подборки некоторых опубликованных данных прогнозов на 2000 г.

Таблица 5.7. Некоторые недавние прогнозы энергопотребления на 2000 г.
(в скобках – год публикации) и его действительное значение.

Прогностический центр Потребление первичной энергии,
Гт усл.топл./год
Институт атомной энергии (1987) 21.2
Международный институт прикладного системного анализа (IIASA) (1981) 20.0
Международное агентство по атомной энергии (МАГАТЭ) (1981) 18.7
Окриджская национальная лаборатория (ORNL) (1985) 18.3
Международная комиссия по изменению климата (IPCC) (1992) 15.9
Лаборатория глобальных проблем энергетики ИБРАЭ РАН–МЭИ (1990) 14.5
Действительное энергопотребление 14.3

    Уменьшение энергопотребления по отношению к прогнозируемому связаны, прежде всего, с переходом от экстенсивных путей ее развития, от энергетической эйфории к энергетической политике, основанной на повышении эффективности использования энергии и всемерной ее экономии.
    Поводом для этих изменений стали энергетические кризисы 1973 и 1979 годов, стабилизация запасов ископаемых топлив и удорожание их добычи, желание уменьшить обусловленную экспортом энергоресурсов зависимость экономики от политической нестабильности в мире.

Табл.5.8. Стоимость электроэнергии от различных источников в США в 2000 г. (долл./кВт.ч).
Источник электроэнергии Стоимость
АЭС 0.14–0.15
ТЭС (уголь) 0.07–0.09
ГЭС (большие) 0.04
ГЭС (малые) 0.10–0.12
ТЭС (газовые) 0.04–0.06
ТЭС (биомасса) 0.07–0.10
ТЭС (геотермальные) 0.04
ВЭС (ветроустановки) 0.06–0.10
ГТЭС (гелиоустановки) 0.10–0.20

    Вместе с тем, говоря о потреблении энергии, следует отметить, что в постиндустриальном обществе должна быть решена еще одна основополагающая задача – стабилизация численности населения.
   
Современное общество, не решившее эту проблему или, по крайней мере, не предпринимающее усилий для ее решения, не может считаться ни развитым, ни цивилизованным, поскольку совершенно очевидно, что бесконтрольный рост населения ставит непосредственную угрозу существования человека как биологического вида.
    Итак, потребление энергии на душу населения в мире обнаруживает явную тенденцию к стабилизации. Следует отметить, что этот процесс начался еще около 25 лет тому назад, т.е. задолго до нынешних спекуляций на глобальном изменении климата. Такое явление в мирное время наблюдается впервые с начала индустриальной эпохи и связано с массовым переходом стран мира в новую, постиндустриальную стадию развития, в которой потребление энергии на душу населения остается постоянным. Указанный факт имеет весьма важное значение, поскольку в результате и величина общего потребления энергии в мире растет гораздо более медленными темпами. Можно утверждать, что серьезное замедление темпов роста энергопотребления оказалось полной неожиданностью для многих прогнозистов.

Кризис топливных ресурсов

    В начале 70-х годов страницы газет запестрели заголовками: «Энергетический кризис!», «Надолго ли хватит органического топлива?», «Конец нефтяного века!», «Энергетический хаос». Этой теме до сих пор большое внимание уделяют все средства массовой информации – печать, радио, телевидение. Основания для такой тревоги есть, ибо человечество вступило в сложный и достаточно долгий период мощного развития своей энергетической базы. Поэтому следуете просто расходовать известные сегодня запасы топлива, но расширяя масштабы современной энергетики, отыскивать новые источники энергии и развивать новые способы её преобразования.
    Прогнозов о развитии энергетики сейчас очень много. Тем не менее, несмотря на улучшившуюся методику прогнозирования, специалисты, занимающиеся прогнозами, не застрахованы от просчетов, и не имеют достаточных оснований говорить о большой точности своих прогнозов для такого временного интервала, каким являются 40-50 лет.
    Человек всегда будет стремиться обладать как можно большим количеством энергии, обеспечивающим движение вперед. Не всегда наука и техника дадут ему возможность получать энергию во всевозрастающих объемах. Но, как показывает историческое развитие, обязательно будут появляться новые открытия и изобретения, которые помогут человечеству сделать очередной качественный скачок и пойти к новым достижениям ещё более быстрыми шагами.
    Тем не менее, пока проблема истощения энергетических ресурсов остается. Ресурсы, которыми обладает Земля, делятся на возобновляемые и невозобновляемые. К первым относятся солнечная энергия, тепло Земли, приливы океанов, леса. Они не прекратят существования, пока будут Солнце и Земля. Невозобновляемые ресурсы не восполняются природой или восполняются очень медленно, гораздо медленнее, чем их расходуют люди. Скорость образования новых горючих ископаемых в недрах Земли определить довольно трудно. В связи с этим оценки специалистов различаются более чем в 50 раз. Если даже принять самое большое это число, то все равно скорость накопления топлива в недрах Земли в тысячу раз меньше скорости его потребления. Поэтому такие ресурсы и называют невозобновляемыми. Оценка запасов и потребления основных из них приведена в табл.5.44. В таблице приведены потенциальные ресурсы. Поэтому при существующих сегодня методах добычи из них можно извлечь только около половины. Другая половина остается в недрах. Именно поэтому, часто утверждают, что запасов хватит на 120-160 лет. Большую тревогу вызывает намечающееся истощение нефти и газа, которого (по имеющимся оценкам) может хватить всего на 40-60 лет.
    С углем свои проблемы. Во-первых, его транспортировка – дело весьма трудоемкое. Так в России, основные запасы угля сосредоточены на востоке, а основное потребление – в европейской части. Во-вторых, широкое использование угля связано с серьезным загрязнением атмосферы, засорением поверхности земли и ухудшением почвы.
    В разных странах все перечисленные проблемы выглядят различно, но решение их почти везде было одно – внедрение атомной энергетики. Запасы уранового сырья тоже ограничены. Однако если говорить о современных тепловых реакторах усовершенствованного типа, то для них, вследствие достаточно большой их эффективности, можно считать запасы урана практически безграничными.
    Так почему же люди заговорили об энергетическом кризисе, если запасов только органического топлива хватит на сотни лет, а в резерве ещё ядерное?
    Весь вопрос в том, сколько оно стоит. И именно с этой стороны нужно рассматривать сейчас энергетическую проблему. в недрах земли ещё много, но их добыча Нефти, газа стоит все дороже и дороже, так как эту энергию приходится добывать из более бедных и глубоко залегающих пластов, из небогатых месторождений, открытых в необжитых, труднодоступных районах. Гораздо больше приходится и придется вкладывать средств для того, чтобы свести к минимуму экологические последствия использования органического топлива.
    Атомная энергия внедряется сейчас не потому, что она обеспечена топливом на столетия и тысячелетия, а, скорее из-за экономии и сохранения на будущее нефти и газа, а также из-за возможности уменьшения экологической нагрузки на биосферу.
    Существует распространенное мнение, что стоимость электроэнергии АЭС значительно ниже стоимости энергии, вырабатываемой на угольных, а в перспективе – и газовых электростанциях. Но если подробно рассмотреть весь цикл атомной энергетики (от добычи сырья до утилизации РАО, включая расходы на строительство самой АЭС), то эксплуатация АЭС и обеспечение ее безопасной работы оказываются дороже, чем строительство и работа станции такой же мощности на традиционных источниках энергии (табл.5.8 на примере экономики США).
    Поэтому в последнее время все больший акцент делается на энергосберегающих технологиях и возобновляемых источниках – таких как солнце, ветер, водная стихия. Например, в Европейском союзе поставлена цель к 2010-2012 гг. получать 22% электроэнергии с помощью новых источников. В Германии, например, уже в 2001 г. энергия, производимая от возобновимых источников, была равносильна работе 8 атомных реакторов, или 3.5% всей электроэнергии.
    Многие считают, что будущее принадлежит дарам Солнца. Однако, оказывается и здесь все не так просто. Пока стоимость получения электроэнергии с применением современных солнечных фотоэлектрических элементов в 100 раз выше, чем на обычных электростанциях. Однако специалисты, занимающиеся фотоэлементами, полны оптимизма, и считают, что им удастся существенно снизить их стоимость.
    Точки зрения специалистов на перспективы использования возобновляемых источников энергии очень различаются. Комитет по науке и технике в Англии, проанализировав перспективы освоения таких источников энергии, пришел к выводу, что их использование на базе современных технологий пока минимум в два-четыре раза дороже строительства АЭС. Другие специалисты в различных прогнозах этим источникам энергии уже в недалеком будущем. По-видимому, источники возобновляемой энергии будут применяться в отдельных районах мира, благоприятных для их эффективного и экономичного использования, но в крайне ограниченных масштабах. Основную долю энергетических потребностей человечества должны обеспечить уголь и атомная энергетика. Правда, пока нет настолько дешевого источника, который позволил бы развивать энергетику такими быстрыми темпами, как бы этого хотелось.
    Сейчас и на предстоящие десятилетия наиболее экологичным источником энергии представляются ядерные, а затем, возможно, и термоядерные редакторы. С их помощью человек и будет двигаться по ступеням технического прогресса. Будет двигаться до тех пор, пока не откроет и не освоит какой-либо другой, более удобный источник энергии.
    На рис.5.38 приведен график роста мощности АЭС в мире и производства электроэнергии за 1971-2006 гг., и прогнозы развития на 2020-30 гг. Помимо упомянутых выше, несколько развивающихся стран, таких, как Индонезия, Египет, Иордания и Вьетнам, заявили о возможности создания АЭС и сделали первые шаги в этом направлении.


Рис.5.38. (наверху) Рост мощности АЭС и производства электроэнергии за 1971-2006 гг. по данным МАГАТЭ и прогнозы мощности АЭС в Мире на 2020-2030 гг. (внизу)

Экологический кризис энергетики

    Основные формы влияния энергетики на окружающую среду состоят в следующем.

  1. Основной объем энергии человечество пока получает за счет использования невозобновимых ресурсов.
  2. Загрязнение атмосферы: тепловой эффект, выделение в атмосферу газов и пыли.
  3. 3. Загрязнение гидросферы: тепловое загрязнение водоемов, выбросы загрязняющих веществ.
  4. Загрязнение литосферы при транспортировке энергоносителей и захоронении отходов, при производстве энергии.
  5. Загрязнение радиоактивными и токсичными отходами окружающей среды.
  6. Изменение гидрологического режима рек гидроэлектростанциями и как следствие загрязнение на территории водотока.
  7. Создание электромагнитных полей вокруг линий электропередач.

    Согласовать постоянный рост энергопотребления с ростом отрицательных последствий энергетики, учитывая, что в ближайшее время человечество ощутит ограниченность ископаемого топлива, можно, по-видимому, двумя способами

  1. Экономия энергии. Степень влияния прогресса на экономию энергии можно продемонстрировать на примере паровых машин. Как известно, КПД паровых машин 100 лет назад составлял 3-5%, а сейчас достигает 40%. Развитие мировой экономики после энергетического кризиса 70 годов также показало, что на этом пути у человечества есть значительные резервы. Применение ресурсосберегающих и энергосберегающих технологий обеспечило значительное сокращение потребления топлива и материалов в развитых странах.
  2. Развитие экологически более чистых видов производства энергии. Решить проблему, вероятно, способно развитие альтернативных видов энергетики, особенно базирующихся на использовании возобновляемых источников. Однако пути реализации данного направления пока не очевидны. Пока возобновимые источники дают не более 20 % общемирового потребления энергии. Основной вклад в эти 20% дают использование биомассы и гидроэнергетика.

Экологические проблемы традиционной энергетики

    Основная часть электроэнергии производится в настоящее время на тепловых электростанциях (ТЭС). Далее обычно идут гидроэлектростанции (ГЭС) и атомные электростанции (АЭС).

    1) Тепловые электростанции
   
В большинстве стран мира доля электроэнергии, вырабатываемой на ТЭС больше 50%. В качестве топлива на ТЭС обычно используются уголь, мазут, газ, сланцы. Ископаемое топливо относится к невозобновимым ресурсам. Согласно многим оценкам угля на планете хватит на 100-300 лет, нефти на 40-80 лет, природного газа на 50-120 лет.
    Коэффициент полезного действия ТЭС составляет в среднем 36-39%. Наряду с топливом ТЭС потребляет значительное количество воды. Типичная ТЭС мощностью 2 млн. кВт ежесуточно потребляет 18 000 т угля, 2500 т мазута, 150 000 м3 воды. На охлаждение отработанного пара на ТЭС используются ежесуточно 7 млн. м3 воды, что приводит к тепловому загрязнению водоема-охладителя.
    Для ТЭС характерно высокое радиационное и токсичное загрязнение окружающей среды. Это обусловлено тем, что обычный уголь, его зола содержат микропримеси урана и ряда токсичных элементов в значительно больших концентрациях, чем земная кора.
    При строительстве крупных ТЭС или их комплексов загрязнение еще более значительно. При этом могут возникать новые эффекты, например, обусловленные превышением скорости сжигания кислорода над скоростью его образования за счет фотосинтеза земных растений на данной территории, или вызванные увеличением концентрации углекислого газа в приземном слое.
    Из ископаемых источников топлива наиболее перспективным является уголь (его запасы огромны по сравнению с запасами нефти и газа). Основные мировые запасы угля сосредоточены в России, Китае и США. При этом основное количество энергии в настоящее время вырабатывается на ТЭС за счет использования нефтепродуктов. Таким образом, структура запасов ископаемого топлива не соответствует структуре его современного потребления при производстве энергии. В перспективе – переход на новую структуру потребления ископаемого топлива (угля) вызовет значительные экологические проблемы, материальные затраты и изменения во всей промышленности. Ряд стран уже начал структурную перестройку энергетики.


Рис.5.39. Дивногорская ГЭС.

    2) Гидроэлектростанции
   
Основные достоинства ГЭС – низкая себестоимость вырабатываемой электроэнергии, быстрая окупаемость (себестоимость примерно в 4 раза ниже, а окупаемость в 3-4 раза быстрее, чем на ТЭС), высокая маневренность, что очень важно в периоды пиковых нагрузок, возможность аккумуляции энергии.
    Но даже при полном использовании потенциала всех рек Земли можно обеспечить не более четверти современных потребностей человечества. В России используется менее 20 % гидроэнергетического потенциала. В развитых странах эффективность использования гидроресурсов в 2-3 раза выше, т.е. здесь у России есть определенные резервы. Однако сооружение ГЭС (особенно на равнинных реках) приводит ко многим экологическим проблемам. Водохранилища, необходимые для обеспечения равномерной работы ГЭС, вызывают изменения климата на прилегающих территориях на расстояниях до сотен километров, являются естественными накопителями загрязнений.
    В водохранилищах развиваются сине-зеленые водоросли, ускоряются процессы эфтрофикации, что приводит к ухудшению качества воды, нарушает функционирование экосистем. При строительстве водохранилищ нарушаются естественные нерестилища, происходит затопление плодородных земель, изменяется уровень подземных вод.
    Более перспективным является сооружение ГЭС на горных реках. Это обусловлено более высоким гидроэнергетическим потенциалом горных рек по сравнению с равнинными реками. При сооружении водохранилищ в горных районах не изымаются из землепользования большие площади плодородных земель.


Рис.5.40. Балаковская АЭС.

    3) Атомные электростанции
   
АЭС не вырабатывают углекислого газа, объем других загрязнений атмосферы по сравнению с ТЭС также мал. Количество радиоактивных веществ, образующихся в период эксплуатации АЭС, сравнительно невелико. В течение длительного времени АЭС представлялись как наиболее экологически чистый вид электростанций и как перспективная замена ТЭС, оказывающих влияние на глобальное потепление. Однако процесс безопасной эксплуатации АЭС еще не решен. С другой стороны, замена основной массы ТЭС на АЭС для устранения их вклада в загрязнение атмосферы в масштабе планеты не осуществима из-за огромных экономических затрат.
    Чернобыльская катастрофа привела к коренному изменению отношения населения к АЭС в регионах размещения станций или возможного их строительства. Поэтому перспектива развития атомной энергетики в ближайшие годы неясна. Среди основных проблем использования АЭС можно выделить следующие.
    1. Безопасность реакторов. Все современные типы реакторов ставят человечество под угрозу риска глобальной аварии, подобной Чернобыльской. Такая авария может произойти по вине конструкторов, из-за ошибки оператора или в результате террористического акта. Принцип внутренней самозащищенности активной зоны реактора в случае развития аварии по худшему сценарию с расплавлением активной зоны должен быть непреложным требованием при проектировании реакторов. Ядерная технология сложна. Потребовались годы анализа и накопленного опыта, чтобы просто осознать возможность возникновения некоторых типов аварий.
    Неопределенности в отношении безопасности никогда не будут полностью разрешены заранее. Большое их количество будет обнаружено только во время эксплуатации новых реакторов.
    3. Снижение эмиссии диоксида углерода. Считается, что вытеснение тепловых электростанций атомными поможет решить проблему снижения выбросов диоксида углерода, одного из главных парниковых газов, способствующих потеплению климата на планете. Однако, на самом деле, электростанции с комбинированным циклом на природном газе не только намного экономичнее, чем АЭС, но и при одних и тех же затратах достигается значительно большее снижение выбросов диоксида углерода, чем при использовании атомной энергии с учетом всего топливного цикла (потребление энергии при добыче и обогащении урана, изготовлении ядерного топлива и других затрат на «входе» и «выходе»).
    4. Снятие с эксплуатации реакторов на АЭС. К 2010 г. половина из работающих в мире АЭС имела возраст 25 лет и более. После этого предполагается процедура снятия с эксплуатации реакторов. По данным Всемирной ядерной ассоциации (WNA), более 130 промышленных ядерных установок уже выведены из эксплуатации, либо ожидают этой процедуры. И во всех случаях возникает проблема утилизации радиоактивных отходов, которые надо надежно изолировать и хранить длительный срок в специальных хранилищах. Многие эксперты считают, что эти расходы могут сравняться с расходами на строительство АЭС.
    5. Опасность использования АЭС для распространения ядерного оружия. Каждый реактор производит ежегодно плутоний в количестве, достаточном для создания нескольких атомных бомб. В отработавшем ядерном топливе (ОЯТ), которое регулярно выгружается из реакторов, содержится не только плутоний, но и целый набор опасных радиационных элементов. Поэтому МАГАТЭ старается держать под контролем весь цикл обращения с отработавшим ядерным топливом во всех странах, где работают АЭС.
    Примитивную атомную бомбу можно сделать из отработавшего ядерного топлива любой АЭС. Если для создания бомбы необходимы сложное производство, специальное оборудование и подготовленные специалисты, то для создания так называемых грязных ядерных взрывных устройств – все намного проще, и здесь опасность очень велика. При использовании такой «самоделки» ядерного взрыва, конечно, не будет, но будет сильное радиоактивное заражение. Такие устройства террористы и экстремисты могут изготовить самостоятельно, приобретя на ядерном черном рынке необходимые расщепляющие материалы. Такой рынок, как это ни прискорбно, существует, и атомная промышленность является потенциальным поставщиком таких материалов.

Эколого-экономическая характеристика основных возобновимых и альтернативных источников энергии

    Считается, что возобновимые источники энергии (ветровые, солнечные, геотермальные, волновые и др.), модульные станции на природном газе с использованием топливных элементов, утилизация сбросного тепла и отработанного пара, как и многое другое,– реальные пути защиты от изменения климата без создания новых угроз для ныне живущих и будущих поколений. Рассмотрим эти вопросы более подробно.

    1) Прямое использование солнечной энергии
   
Мощность солнечной радиации, поглощенной атмосферой и земной поверхностью, составляют 105 ТВт (1017 Вт). Эта величина кажется огромной по сравнению с современным мировым энергопотреблением, равным 10 ТВт. Поэтому ее считают наиболее перспективным видом нетрадиционной (альтернативной) энергетики.
    К основным методам преобразования солнечной энергии относятся, прежде всего, методы прямого использования солнечной энергии – фотоэлектрическое преобразование и термодинамический цикл, а также биоконверсия.
    Фотоэлектрический метод
преобразования солнечной энергии основан на особенностях взаимодействия полупроводниковых материалов со световым излучением. В фотоэлектрическом преобразователе свободные носители образуются в результате поглощения светового кванта полупроводником, разделение зарядов производится под действием электрического поля, возникающего внутри полупроводника. Теоретически КПД преобразователя может достигать 28%.
    Низкая плотность солнечного излучения является одним из препятствий его широкого использования. Для устранения этого недостатка при конструировании фотоэлектрических преобразователей используются различного рода концентраторы излучения. Главные преимущества фотоэлектрических установок заключается в том, что они не имеют движущихся частей, их конструкция очень проста, производство – тех­нологично. К их недостаткам можно отнести разрушение полупроводникового материала от времени, зависимость эффективности работы системы от ее запыленности, необходимость разработки сложных методов очистки батарей от загрязнения. Все это ограничивает срок службы фотоэлектрических преобразователей.
    Гибридные станции, состоящие из фотоэлектрических преобразователей и дизельных генераторов, уже широко используются для электроснабжения на территориях, где нет распределительных электрических сетей. Например, система такого типа обеспечивает электроэнергией жителей Кокосового острова, расположенного в Торресовом проливе.


Рис.5.41. Схема термодинамического преобразователя солнечной энергии: а – схема с теплообменником, б – схема без теплообменника.

   Энергию получают из солнечной энергии методом термодинамического преобразования практически так же как из других источников. Однако такие особенности солнечного излучения как низкая мощность, суточная и сезонная изменчивость, зависимость от погодных условий, накладывают определенные ограничения на конструкцию термодинамических преобразователей.
    Обычный термодинамический преобразователь солнечной энергии содержит (рис.5.41) систему улавливания солнечной радиации, которая предназначена частично скомпенсировать низкую плотность солнечного излучения; приемную систему, которая преобразует солнечную энергию в энергию теплоносителя; систему переноса теплоносителя от приемника к аккумулятору или к теплообменнику; тепловой аккумулятор, который обеспечивает смягчение зависимости от суточной изменчивости и погодных условий; теплообменники, образующие нагревательный и охладительный источники тепловой машины.
    Для среднетемпературного аккумулирования (от 100 до 5500С) используются гидраты оксидов щелочноземельных металлов. Высокотемпературное аккумулирование (температура выше 5500С) осуществляется с помощью обратимых экзо-эндотермических реакций.
    В настоящее время идеи термодинамического преобразования реализуются в схемах двух типов: гелиостаты башенного типа и станции с распределенным приемником энергии.
    На гелиостанции башенного типа энергия от каждого гелиостата передается оптическим способом. Управление гелиостатами осуществляет ЭВМ. До 80% стоимости станции составляет стоимость гелиостатов. Система сбора и передачи энергии в установках башенного типа оказывается очень дорогой. Поэтому такие установки не получили широкого распространения. В Мексике, США, работают установки такого типа мощностью 10 Мвт.
    Станции с распределенными приемниками солнечной энергии оказались более перспективными. Концентраторы параболического типа, вращающиеся вокруг оси, передают энергию трубчатым приемникам, находящимся на фокальной линии. В качестве теплоносителя обычно используется масло. Нерешенной проблемой в гелиостанциях является вопрос о длительном хранении электроэнергии. Правда следует отметить, что этот вопрос не решен не только в солнечной энергетике, но и вообще в энергетике.


Рис. 5.42. Динамика суммарных установленных мощностей солнечных модулей по регионам мира за 2000-2009 гг.

   Более широкому внедрению солнечной энергетики пока препятствует более высокая стоимость производства на солнечных электростанциях по сравнению с традиционными источниками энергии. Солнечная энергетика имеет особенности, которые существенно затрудняют ее широкое использование. Это, прежде всего низкая плотность потока энергии и ее непостоянство, т.к. интенсивность солнечного излучения зависит от времени года, суток и метеоусловий. Тем не менее, в настоящее время, наблюдается тенденция значительного роста, как вводимых мощностей, так и инвестиций в данную отрасль по всему миру. В 2008-2009 гг. новые инвестиции превысили половину всех инвестиций в общее производство энергии. В 2010 г. впервые прирост мощностей, основанных на возобновляемых источниках энергии, превысил ввод в действие мощностей традиционных. По показателям имеющихся мощностей и инвестиций по многим параметрам лидируют Китай, США, Германия, Индия и Бразилия. На фоне этого российская цель – 1.5 % к 2010 г. и 4.5 % ВИЭ в производстве электроэнергии к 2020 г. – выглядит очень скромно.
    Кроме того, использование энергии солнца предполагает обязательное наличие накопителей электроэнергии достаточной емкости. Как правило, это обычные аккумуляторы. Поэтому, если рассматривать солнечную энергетику полного цикла (с учетом производства датчиков-преобразователей солнечной энергии и, особенно, аккумуляторных батарей), то суммарное влияние такой энергетики на загрязнение окружающего пространства оказывается не таким уж и незначительным.

    2Биоконверсия солнечной энергии
    Биомасса, как источник энергии, используется с древнейших времен. В процессе фотосинтеза солнечная энергия запасается в виде химической энергии в зеленой массе растений. Запасенная в биомассе энергия может быть использована в виде пищи человеком или животными или для получения энергии в быту и производстве. В настоящее время до 15% энергии в мире производится из биомассы.
    Самый древний, и еще широко применяемый, способ получения энергии из биомассы заключается в ее сжигании. В сельской местности до 85% энергии получают этим способом. Как топливо, биомасса имеет ряд преимуществ перед ископаемым топливом. Прежде всего – это возобновимый источник энергии. При сжигании биомассы выделяется в 10-20 раз меньше серы и в 3-5 раз меньше золы, чем при сжигании угля. Количество углекислого газа, выделившегося при сжигании биомассы, равно количеству углекислого газа, затраченного в процессе фотосинтеза.
    Энергию биомассы можно получать из специальных сельскохозяйственных культур. Например, в субтропическом поясе России предлагается выращивать карликовые породы быстрорастущего вида папайи. С одного гектара за 6 месяцев на опытных участках получают более 5 т биомассы по сухому весу, которую можно использовать для получения биогаза. К перспективным видам относятся быстрорастущие деревья, растения, богатые углеводами, которые применяются для получения этилового спирта (например, сахарный тростник). В США разработан способ производства спирта из кукурузы, в Италии ведутся работы над разработкой способа рентабельного производства спирта из сорго. Около 200 автобусов в Стокгольме уже работают на спирте.


Рис.5.43. Водорослевая плантация в тепличном комплексе.

    Широко распространенный способ получения энергии из биомассы заключается в получении биогаза путем анаэробного перебраживания. Такой газ содержит около 70% метана. Биометаногенез был открыт еще в 1776 году Вольтой, который обнаружил содержание метана в болотном газе. Биогаз позволяет использовать газовые турбины, являющиеся самыми современными средствами теплоэнергетики. Для производства биогаза используются органические отходы сельского хозяйства и промышленности. Это направление является одним из перспективных и многообещающих способов решения проблемы энергообеспечения сельских районов. Например, из 300 т сухого вещества навоза, превращенного в биогаз, выход энергии составляет около 30 т нефтяного эквивалента.
    Биомассу для последующего получения биогаза, можно выращивать в водной среде, культивируя водоросли и микроводоросли. Во многих научных лабораториях, например в Лаборатории возобновляемых источников энергии МГУ им. М. В. Ломоносова, сейчас занимаются разработкой технологий выращивания микроводорослей для биоконверсии солнечной энергии.

    3) Волновая энергетика
    Волновая электростанция
– установка, расположенная в водной среде, целью которой является получение электричества из кинетической энергии волн.
    В последнее время пристальное внимание ученых и конструкторов привлекает использование различных видов энергии Мирового океана. Построены первые приливные электростанции. Разрабатываются методы использования тепловой энергии океана, связанной, например, со значительной разницей температур поверхностного и глубинного слоев океана, достигающей в тропических областях 20°С и более. В настоящее время накоплен значительный объем инструментальных измерений ветрового волнения в Мировом океане. На основе этих данных волновая климатология определяет районы с наиболее интенсивным и постоянным волнением.


Рис.5.44. Конвертеры волновой энергии первой в мире волновой электростанции Pelamis P-750 (Португалия).

   Первая заявка на патент волновой электростанции была подана в Париже в 1799 г. Уже в 1890 г. была предпринята первая попытка практического использования энергии волн, хотя первая волновая электростанция мощностью 2,25 МВт вошла в коммерческую эксплуатацию только в 2008 г. в районе Агусадора (Португалия) на расстоянии 5 км от берега (рис.5.44). Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 г. заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции. Стоимость контракта составила 8 млн. евро. В 2009 г. волновая электростанция была введена в эксплуатацию на Оркнейских островах. В Великобритании строится волновая электростанция мощностью в 20 МВт. Строят такие электростанции и некоторые другие прибрежные государства.
    В большинстве проектов волновых электростанций предполагается использовать двухступенчатую схему преобразования. На первом этапе осуществляется передача энергии от волны к телу-поглотителю и решается задача концентрирования волновой энергии. На втором этапе поглощенная энергия преобразуется в вид, удобный для потребления. Существует три основных типа проектов по извлечению волновой энергии. В первом используется метод повышения концентрации волновой энергии и превращения ее в потенциальную энергию воды. Во втором – тело с несколькими степенями свободы находится у поверхности воды. Волновые силы, действующие на тело, передают ему часть волновой энергии. Основным недостатком такого проекта является уязвимость тела, находящегося под действием волн. В третьем типе проектов, система, поглощающая энергию, находится под водой. Передача волновой энергии происходит под действием волнового давления или скорости.
    В ряде волновых установок для повышения эффективности плотность волновой энергии искусственно повышается. Изменяя рельеф дна в прибрежной зоне, можно сконцентрировать морские волны по­добно линзе, фокусирующей световые волны. Если сфокусировать волны с побережья длиной в несколько километров на фронте в 500 м, то высота волны может достигнуть 30 м. Попадая в специальные сооружения, вода поднимается на высоту в 100 м. Энергия поднятой воды может быть использована для работы гидроэлектростанции, распо­ложенной на уровне океана. Волновая электростанция подобного типа используется для обеспечения электроэнергией острова Маврикий, не имеющего традиционных источников энергии.
    Ряд устройств по преобразованию волновой энергии использует различные свойства волновых движений: периодические изменения уровня водной поверхности, волнового давления или волновой скорос­ти. Процент использования волновой энергии достигает 40 %. Электроэнергия передается на берег по кабелю. В Японии создан промышленный образец такой системы, имеющей 9 турбин общей мощностью в 2 МВт.
    Сила, с которой волны воздействуют на сооружения в береговой зоне, достигает нескольких тонн на квадратный метр. Это силовое воздействие тоже может быть использовано для преобразования волновой энергии.
    Волновая энергетика не использует ископаемое топливо, стоимость которого непрерывно растет, а запасы ограничены. Перед волновой энергетикой не стоит в острой форме проблема воздействия на окружающую среду. Однако в настоящее время производство 1 кВт электроэнергии на волновых электростанциях в 5-10 раз выше, чем на АЭС или ТЭС. Кроме того, если значительная часть акватории будет покрыта волновыми преобразователями, это может привести к неприятным экологическим последствиям, так как волны играют важную роль в газообмене атмосферы и океана, в очистке поверхности моря и приводного слоя воздушного потока от загрязнения.
    Поэтому волновую энергетику следует рассматривать только как дополнительный к традиционным источник энергии, который может иметь значение только в некоторых районах мира.

    4) Приливные электростанции
    В прибрежной зоне приливные волны проявляются в периодическом подъеме и опускании уровня. В узостях приливы часто проявляются в виде мощных течений. В некоторых местах высота прилива достигает значительной величины – 12-20 м. Энергия приливных волн огромна.


Рис.5.45. Приливная электростанция «Аннапорлис» (Канада).

    Человек уже давно начал использовать энергию приливов. Так, приливные мельницы использовались в 15 веке в Англии, были широко распространены на северо-восточном побережье Канады в 17 веке.
    Для концентрации водного напора на станции плотина отделяет часть акватории. В теле плотины размещаются гидрогенераторы, водопропускные сооружения, здание станции. Величина напора зависит от колебаний уровня по обе стороны плотины. Колебания во внешнем бассейне определяются местным приливом, колебания во внутреннем бассейне определяются расходами воды при работе станции. Приливные станции относятся к низконапорным гидротехническим сооружениям, в которых водяной напор не более 15-20 м.
    Первая в мире приливная гидроэлектростанция мощностью 320 МВт была запущена в 1966 г. устье реки Ранс (Франция). Первая приливная электростанция в нашей стране, имеющая два гидроагрегата по 400 кВт каждый, была построена в Кислой губе на Баренцевом море в 1968 г. Несколько приливных станций проектируется и уже построено в заливе Фанди, который характеризуется самыми высокими приливами в мире. Опыт строительства и эксплуатации подобных станций показал, что они экономически оправданы, и издержки их эксплуатации гораздо ниже, чем при эксплуатации обычных ГЭС. Наиболее развитым в мире рынком электроэнергии, выработанной посредством волн и приливов, является Шотландия, где установлены самые большие приливные турбины.


Рис.5.46. Кислогубская ПЭС (СССР), вид с моря, 1968 год.

    Использование энергии приливов ограничивается, в основном, высокой стоимостью сооружения. Кроме того, как оказалось, приливные станции характеризуются отрицательным влиянием на окружающую среду. Сооружение плотины приведет к увеличению амплитуды прилива. Даже небольшое повышение амплитуды прилива вызовет значительное изменение распределение грунтовых вод в береговой зоне, увеличит зону затопления, нарушит циркуляцию водных масс, изменит ледовый режим в части бассейна за плотиной и т.д.
    Сооружение плотины должно вызвать и важные биологические последствия. В бассейне за плотиной работа станции будет оказывать воздействие на литораль (зона между наивысшей точкой затопления во время прилива и нижней, обнажающейся при отливе). Плотина может оказать вредное воздействие не только на местные сообщества, но и на мигрирующие виды. Например, по оценкам биологов строительство плотины в Пенжинской губе Охотского моря нанесет непоправимый вред популяции охотоморской сельди. При строительстве плотин в зоне умеренного климата возможно образование зоны сероводородного заражения, подобной тем, которые наблюдаются в заливах и бухтах, имеющих естественные пороги. Фиорды Скандинавского полуострова, имеющие естественный порог, представляют собой классический пример такого естественного сероводородного заражения.

    5) Градиент-температурная энергетика
   
Данный способ получения энергии основан на разности температур. Не слишком распространен. Посредством него можно получать достаточно большое количество энергии при небольшой ее себестоимости. Наибольшее число градиент-температурных электростанций располагается на морском побережье и для работы использует морскую воду. Почти 70% солнечной энергии поглощает мировой океан. Перепад же температур между водами на глубине в сотни метров и водами на поверхности океана – огромный источник энергии, который оценивается в 20-40 тыс. ТВт, из них можно использовать только 4 ТВт.
    Недостатки: выделение большого числа углекислоты, нагрев и снижение давления глубинных вод, и остывание поверхностных вод. Данные процессы негативно влияют на климат, флору и фауну региона.
    В настоящее время разрабатывается новая концепция таких энергетических установок, которая даёт основания ожидать от теплоэнергетического модуля эффективной работы не только в наиболее прогретой части тропического океана, но и по всей акватории, где средний градиент температуры составляет примерно 17ºС. Ожидается, что КПД будет отличным от нуля даже при разности температур, стремящейся к нулю. По предварительным расчётам расходы на строительство такой гидроэлектростанции вполне соотносятся с расходами на традиционную ГЭС.


Рис. 5.47. Ветровые электростанции.
    6) Ветровая энергетика
    Человечество давно использует энергию ветра. Парусные суда – основной вид транспорта, который в течении столетий обеспечивал связь людей различных континентов, представляют наиболее яркий пример использования ветровой энергии.
    Другой, хорошо известный пример эффективного использования ветровой энергии, – ветряные мельницы. Ветряки широко использовались для откачки воды из колодцев. В конце прошлого века наступил новый этап использования ветровых установок – они начали применяться для выработки электроэнергии. В тридцатые годы нашего века миллионы ветровых электрогенераторов мощностью около 1 кВт использовались в сельской местности Европы, Америки, Азии. По мере развития центрального электроснабжения распространение ветровых электрогенераторов резко упало. С ростом стоимости ископаемого топлива и осознания экологических последствий его применения надежды многих исследователей опять стали связываться с ветровой энергетикой.
    Действительно ветровой потенциал огромен – около 2000 ТВт составляет мощность ветрового потока в атмосфере. Использование даже небольшой части этой мощности привело бы к решению энергетических проблем человечества.
    Ветровая энергетика не потребляет ископаемое топливо, не использует воду для охлаждения и не вызывает теплового загрязнения водоемов, не загрязняет атмосферу. И, тем не менее, ветровые электрогенераторы имеют широкий спектр отрицательных экологических последствий, выявленных только после того, как в 1970 годы начался период возрождения ветровой энергетики.
    Главные недостатки ветровой энергетики – низкая энергетическая плотность, сильная изменчивость в зависимости от погодных условий, ярко выраженная географическая неравномерность распределения ветровой энергии. Обычно рабочий диапазон скоростей ветра крупных ветровых установок составляет от 5 до 15 м/с. При скорости ветра меньшей 5 м/с эффективность работы установки падает, при скоростях ветра больших 15 м/с велика вероятность поломки конструкции, прежде всего лопастей. Размещение генераторов на больших высотах (там, где больше скорость) выдвигает повышенные требования к прочности конструкции высотных мачт, которые должны обеспечивать удержание при мощной ветровой нагрузке ротора, коробки передач и генератора. Разработка и создание более надежных конструкций значительно удорожает стоимость ветровых установок, хотя себестоимость ветровой электроэнергии примерно в 1.5-2 раза ниже себестоимости электроэнергии, полученной в фотоэлектрических преобразователях.
    Еще одной важной проблемой использования ветровых генераторов являются сильные вибрации их несущих частей, которые передаются в грунт. Значительная часть звуковой энергии приходится на инфразвуковой диапазон, для которого характерно отрицательное воздействие на организм человека и многих животных.
    Так как скорость вращения лопастей ветровых генераторов близка к частоте синхронизации телевидения ряда стран, то работа ветровых генераторов нарушает прием телепередач в радиусе 1-2 км от генератора. Ветровые генераторы являются также источниками радиопомех. Вращение лопастей ветровых генераторов губит птиц. Так как обычно ветровые установки располагаются в больших количествах в районах сильных ветров (хребты, морское побережье), то они могут приводить к нарушению миграции перелетных птиц. Модуляция ветрового потока лопастями создает некоторое подобие регулярных структур в воздухе, которые мешают ориентации насекомых. В Бельгии установили, что это приводит к нарушению устойчивости экосистем полей, расположенных в зоне ветровых установок, в частности наблюдается падение урожайности.
    Наконец, ветровая энергетика требует больших площадей для размещения установок. Поэтому системы ветровых установок стараются размещать в безлюдной местности, что в свою очередь удорожает стоимость передачи энергии.
    В настоящее время в мире начался период перехода от исследовательских работ в области ветровой энергетики к их широкому внедрению. Темпы развития ветровой энергетики в таких странах как США, Бельгия, Великобритания, Норвегия, имеющих высокий ветроэнергетический потенциал, остаются очень высокими.

7) Геотермальная энергетика

Геотермальная энергия – это энергия, внутренних областей Земли, запасенная в горячей воде или водяном паре. В 1966 г. на Камчатке в долине реки Паужетка была пущена первая в СССР геотермальная тепловая станция мощностью 1,1 МВт. В отдаленных районах стоимость энергии, получаемой на геотермальных станциях, оказывается ниже стоимости энергии, получаемой из привозного топлива. Геотермальные станции успешно функционирует в ряде стран – Италии, Исландии, США. Первая в мире геотермальная электростанция была построена в 1904 г. в Италии. Геотермальная энергия в Исландии начала использоваться в 1944 г. Однако интерес и использование геотермальной энергии резко выросли в 60-70 годы.

Рис.5.48. Схемы получения энергии за счет геотермальных ресурсов: А - использование сухого пара, Б - использование горячей воды, В - использование горячей воды путем нагревания рабочей жидкости.

    В США в Калифорнии в начале 90 годов действовало около 30 станций общей мощностью 2400 МВт. Пар для этих станций извлекался с глубин от 300 до 3000 м. В этом штате США за 30 лет мощность геотермальных станций возросла почти в 200 раз. Таковы темпы развития геотермальной энергетики. Наиболее доступна геотермальная энергетика в зонах повышенной вулканической деятельности и землетрясений. Такая привязка к определенным районам является одним из недостатков геотермальной энергетики. Гейзеры – это хорошо известная форма поступления на поверхность Земли горячей воды и пара. По оценке Геологического управления США разведанные источники геотермальной энергии могли бы дать 5-6% современного потребления электроэнергии в стране. Оценка перспективных источников дает величину примерно в 10 раз большую. Однако эксплуатация некоторых этих источников пока нерентабельна. Наряду с этими ресурсами, которые могут быть использованы для выработки электроэнергии, в еще большем количестве имеется вода с температурой 90-1500С, которая пригодна как источник тепла для обогрева. В перспективе для извлечения энергии из недр Земли можно использовать не только запасы горячей воды и пара, но и тепло сухих горных пород (такие области сухих горных пород с температурой около 3000С встречаются значительно чаще, чем водоносные горячие породы), а также энергию магматических очагов, которые в некоторых районах расположены на глубинах в несколько километров.
    Наиболее оптимальная форма – сухой пар. Прямое использование смеси пара и воды невозможно, т.к. геотермальная вода содержит обычно большое количество солей, вызывающих коррозию, и капли воды в паре могут повредить турбину. Наиболее частая форма поступления энергии – просто в виде горячей воды, прежде всего для получения тепла. Эта вода может быть использована также для получения пара рабочей жидкости, имеющей более низкую температуру кипения, чем вода. Так как геотермальный пар и вода имеют сравнительно низкую температуру и давление, КПД геотермальных станций не превышает 20%, что значительно ниже атомных (30%) и тепловых работающих на ископаемом топливе (40%).
    Использование геотермальной энергии имеет и отрицательные экологические последствия. Строительство геотермальных станций нарушает «работу» гейзеров. Для конденсации пара на геотермальных станциях используется большое количество охлаждающей воды, поэтому геотермальные станции являются источниками теплового загрязнения. При одинаковой мощности с ТЭС или АЭС геотермальная электростанция потребляет для охлаждения значительно большее количество воды, т.к. ее КПД ниже. Сброс сильно минерализованной геотермальной воды в поверхностные водоемы может привести к нарушению их экосистем. В геотермальных вода в больших количествах содержится сероводород и радон, который вызывает радиоактивные загрязнения окружающей среды.


Характеристики ядер в ОМООглавлениеМодель деформированных оболочек. Многочастичная модель оболочек.

На головную страницу

Рейтинг@Mail.ru