На головную страницуВВЕДЕНИЕ

    Основной темой спецкурса является изучение фотоядерных реакций при средних энергиях (от порога рождения пионов до нескольких ГэВ), когда длина волны налетающего фотона сравнима с размером нуклона. Такие реакции являются простым и эффективным способом изучения структуры ядра на уровне нуклонных и мезонных степеней свободы. Это связано с тем, что оператор электромагнитного взаимодействия относительно хорошо изучен, фотоны свободно проникают в ядро и достаточно эффективно взаимодействуют с нуклонами. Вносимый при этом в ядро угловой момент минимален по сравнению с сильно взаимодействующими частицами и множественность образующихся продуктов реакции относительно невелика. Вклад упругого рассеяния в фотоядерных реакциях пренебрежимо мал по сравнению с реакциями, где в качестве налетающих частиц используются мезоны, протоны или тяжелые ионы. Поэтому в сечениях фотоядерных реакций отчетливо выделяется резонансная структура, обусловленная возбуждением и распадом нуклонных резонансов. С точки зрения ядерных или нуклонных взаимодействий фотоны не имеют структуры. Это означает, что любая особенность в наблюдаемых сечениях связана именно со структурой ядра или нуклона.
    Монографий и учебников, посвященных исследованию фотоядерных реакций при средних энергиях, написано мало. Основы исследований по этой тематике были заложены в классических работах Фейнмана. Однако, они ограничивались квантовой электродинамикой, где фотон представляется плоской волной, а электрон или атомное ядро – частицей с точечным зарядом. Новую информацию об электромагнитных взаимодействиях ядер, включая данные о статической, динамической и спиновой структуре нуклонов, об астрофизических приложениях, о ядерных и нуклонных формфакторах, пока можно найти только в трудах международных семинаров и конференций, которые регулярно проводятся в мире. Одна из целей настоящего спецкурса состоит в том, чтобы систематизировать эти результаты и показать современный уровень исследований.
    Изучение фотоядерных реакций в широком диапазоне энергий позволяет получать фундаментальные сведения о различных свойствах ядерной материи и ее взаимодействиях. Основные направления исследований можно систематизировать в таблице:

Eγ(МэВ)

Направление исследований

до 5

Астрофизика.

5 - 30

Коллективные возбуждения ядер.
Гигантские резонансы.

30 – 150

Кластерные состояния. Квазидейтроны.

150 – 2000

Нуклонные резонансы.Фоторождение мезонов.
Статическая, динамическая, спиновая структура нуклонов.

до 106

Векторная доминантность, адронизация фотонов.

    В течение многих лет фотоядерные исследования при средних энергиях были ограничены в связи с отсутствием фотонных пучков с требуемыми параметрами, а именно – высокой интенсивностью, монохроматичностью, высокой степенью поляризации, непрерывностью, низким уровнем фона. При этом основным инструментом были тормозные пучки с непрерывным спектром, которые не обеспечивали нужных требований, за исключением интенсивности. При низких энергиях (в области гигантских резонансов) тормозные пучки продолжают применяться за счет развития компьютерных методов обработки данных. В принципе это возможно, потому что в области низких энергий выход реакции заметно растет с ростом энергии фотонов. Но в области средних энергий, то есть выше порога рождения мезонов, без монохроматизации пучка качественные эксперименты стали практически невозможны. Поэтому настоящий спецкурс включает в себя описание методических достижений в создании фотонных пучков.
    Для улучшения качества пучка применялись разные методы. Наибольшее распространение получил метод мечения тормозных фотонов, когда продукты реакции регистрируются в совпадении с рассеянными на тормозном радиаторе электронами. Этот метод позволил получить высокую монохроматичность пучка при достаточно высокой интенсивности, ограниченной быстродействием схемы совпадений. Были разработаны также способы получения тормозных поляризованных фотонов с использованием Томсоновского рассеяния и каналирования. В настоящее время на усовершенствованных таким образом тормозных пучках успешно ведутся работы в различных научных центрах Европы, США, Канады, Японии и других стран. Одним из перспективных методов улучшения параметров пучка стал метод обратного комптоновского рассеяния, который дал дополнительные преимущества для исследования фотоядерных реакций, а именно - более высокую степень поляризации пучка и низкий уровень фона. Этот метод активно используется на различных электронных накопителях для исследования фотоядерных реакций, а также в прикладных целях. Основным недостатком метода обратного комптоновского рассеяния долгое время была относительно низкая интенсивность пучка, но в последние годы найдены методы ее увеличения до значений, сравнимых с тем, что получают на тормозных пучках.
    Разработка новых методов получения гамма - пучков в последние годы способствовала расширению тематики фотоядерных исследований. В частности, это относится к изучению спиновой структуры нуклонов, к астрофизическим приложениям, исследованию нестабильных экзотических ядер и др. Следует отметить, что в результате использования комптоновского пучка получено наиболее точное ограничение на анизотропию скорости света относительно диполя реликтового излучения в мировой системе координат.
    Кроме фундаментальных исследований, фотоядерные методы активно используются в прикладных областях: материаловедении, биологии, практической медицине. Особое значение в этой связи имеет создание пучков синхротронного излучения на электронных накопителях. Эти вопросы также нашли отражение в программе спецкурса, способствующего образованию специалистов достаточно широкого профиля.
    Особое внимание уделяется современным методам компьютерной обработки данных с использованием моделирования. Эти методы достаточно унифицированы, поэтому изучение спецкурса позволит получить необходимое образование для работы в различных ядерных центрах, где ведутся эксперименты на высоком научном и технологическом уровне.
    Приведенные в учебном пособии ссылки (после каждой главы), как правило, не содержат оригинальных статей, а только монографии и обзоры, откуда взяты используемые материалы.

homenext


На головную страницу

Рейтинг@Mail.ru