Размеры ядра

    Еще на ранней стадии изучения структуры атомных ядер эксперименты по рассеянию alpha1.gif (830 bytes)-частиц на легких ядрах дали основание предполагать, что плотность ядерного вещества у всех ядер приблизительно постоянна. Это предположение было в дальнейшем детально исследовано в опытах Р. Хофштатера по рассеянию электронов высокой энергии на сферических ядрах, расположенных вблизи долины стабильности. Оказалось, что плотности распределения ядерной материи и электрического заряда практически совпадают и описываются распределением Ферми

где ρ0 - плотность ядерной материи в центре ядра, R - радиус ядра – расстояние, на котором плотность ядерной материи спадает в два раза, a - параметр диффузности.

Для ядер, расположенных вблизи долины стабильности, были установлены следующие закономерности.

  • Плотность ядерной материи в центре ядра приблизительно одинакова у всех ядер и составляет ~ 0.17 нукл./Фм3 (см. рис.3).
  • Толщина поверхностного слоя (спад плотности от 0.9ρ0 до 0.1ρ0) у всех ядер примерно одинакова d = 4.4a = 2.4·Фм.
  • Величина радиуса ядра определяется числом нуклонов, R = 1.3A1/3 Фм.

    fig3a.gif (4697 bytes)
    Рис.3. Плотность распределения ядерной материи

    Таким образом, мы видим, что атомные ядра вблизи долины стабильности представляют собой довольно компактные объекты. Их радиусы меняются от 2-3 Фм у самых легких ядер до 9-10 Фм у самых тяжелых. Для ядер, удаленных от долины стабильности, ситуация иная.

Позитрон. Аннигиляция.
Взаимные превращения элементарных частиц

    Открытие позитрона, частицы по своим характеристикам похожей на электрон, но имеющей в отличие от электрона положительный единичный заряд, было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона. Оказалось, что уравнение Дирака имеет два решения, как с положительной, так и с отрицательной энергией. Состояние с отрицательной энергией описывает частицу аналогичную электрону, но имеющую положительный электрический заряд. Позитрон был первой открытой частицей из целого класса частиц, которые получили название античастиц. До открытия позитрона казалась необъяснимой неодинаковая роль положительных и отрицательных зарядов в природе. Почему существует тяжелый положительно заряженный протон, и нет тяжелой частицы с массой протона и отрицательным зарядом? Зато существует легкий отрицательно заряженный электрон. Открытие позитрона по существу восстановило зарядовую симметрию для легких частиц и поставило перед физиками проблему поиска античастицы для протона. Другая неожиданность - позитрон является стабильной частицей и может в пустом пространстве существовать бесконечно долго. Однако при столкновении электрона и позитрона происходит их аннигиляция. Электрон и позитрон исчезают, и вместо них рождаются два -кванта

e+ + e → 2γ.

Происходит превращение частиц с массой покоя отличной от нуля (0.511 МэВ) в частицы с нулевой массой покоя (фотоны), т.е. масса покоя не сохраняется.
    Наряду с процессом аннигиляции был обнаружен и процесс рождения пары электрон-позитрон. Электрон-позитронные пары легко рождались -квантами с энергией в несколько МэВ в кулоновском поле атомного ядра. В классической физике понятия частицы и волны резко разграничены - одни физические объекты являются частицами, а другие - волнами. Превращение пары электрон-позитрон в фотоны стало дополнительным подтверждением представления о том, что между излучением и веществом много общего. Процессы аннигиляции и рождения пар заставили по-новому осмыслить, что же такое элементарная частица. Элементарная частица перестала быть неизменным "кирпичиком" в строении материи. Возникла новая чрезвычайно глубокая концепция взаимного превращения элементарных частиц. Оказалось, что элементарные частицы могут рождаться и исчезать, превращаясь в другие элементарные частицы. Следующая элементарная частица - нейтрино также вначале была предсказана теорией. Открытие нейтрона, казалось, внесло ясность в строение вещества. Все элементарные частицы, необходимые для построения атома: протон, нейтрон, электрон - были известны. Если в составе атомного ядра нет электронов, то откуда же берутся электроны, которые наблюдаются при радиоактивном распаде ядер?

Парадоксы бета - распада. Нейтрино

    Ответ на этот вопрос был дан в 1932 г. через год после открытия нейтрона итальянским физиком Энрико Ферми в разработанной им теории β-распада. β-Распад в определенном смысле аналогичен испусканию фотонов возбужденными атомами. Ни электронов в ядре, ни фотонов в атоме нет до момента излучения, и фотон, и электрон образуются в процессе распада. Изучение процесса
β-распада показало, что испускание электронов вызвано не электромагнитным взаимодействием и не ядерным взаимодействием, а новым типом взаимодействия до сих пор неизвестным в физике. Это взаимодействие было названо слабым взаимодействием. В будущем оно принесло в физику много неожиданных и сенсационных открытий.
    Изучение явления β-распада поставило перед физиками серьезную проблему. Экспериментальные факты казались несовместимыми с законами сохранения энергии, импульса и момента количества движения. Для того, чтобы спасти эти законы В. Паули в 1930 г. высказал предположение, что в процессе β-распада наряду с электроном, который легко наблюдается, должна рождаться еще одна легкая частица с нулевым зарядом, нулевой массой покоя и спином 1/2. Поскольку нейтрино испускалось вместе с электроном в процессе β-распада, оно могло уносить недостающую энергию, импульс и момент количества движения. Для того чтобы проверить гипотезу Паули, необходимо было обнаружить нейтрино экспериментально. Однако свойства нейтрино, предсказанные Паули, делали обнаружение ее чрезвычайно трудной задачей. Дело в том, что нейтрино должно было очень слабо взаимодействовать с веществом. Оно могло пролетать тысячи километров вещества без взаимодействия. Сечение взаимодействия нейтрино с энергией несколько МэВ с атомными ядрами ~10-34 см2.( С колоссальной проникающей способностью нейтрино связано развитие таких направлений в науке как нейтринная астрофизика и нейтринная геофизика. Нейтрино несут информацию о процессах в центре Солнца, о процессах, происходящих в ранней Вселенной и конечных стадиях эволюции звезд.)

    Экспериментальные попытки непосредственно зарегистрировать нейтрино продолжались почти двадцать лет. Лишь в 1953 году в результате очень сложного эксперимента Ф. Райнесу и К. Коуэну удалось зарегистрировать антинейтрино. Антинейтрино было зарегистрировано с помощью реакции e + p → n + e+. Источником антинейтрино служил атомный реактор, в котором антинейтрино образуются в большом количестве(подробнее см. Электронное антинейтрино обнаружено). Гипотеза Паули получила блестящее подтверждение.

Пионы – кванты ядерного поля

    Наличие в атомном ядре нейтронов и протонов поставило перед физиками проблему изучения природы ядерных взаимодействий, связывающих эти частицы в ядре. В 1934 году Х. Юкава предсказал новую частицу - квант ядерного поля. Cогласно гипотезе Юкава взаимодействие между нуклонами возникает в результате испускания и поглощения этих частиц. Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами

 .

Взаимодействие между нуклонами, возникающее в результате обмена квантами массы m, приводит к появлению потенциала

где gя - константа взаимодействия частиц с полем квантов, переносящих ядерное взаимодействие. Принимая во внимание известные факты, что ядерные силы - короткодействующие и имеют характерный радиус действия ~1 Фм, Юкава оценил массу квантов ядерного поля ~200 МэВ. Предсказанная Юкавой частица

 

должна была занимать по массе промежуточное значение между электроном и протоном и была названа мезоном от греческого слова meso - средний. После предсказания свойств мезона начались энергичные поиски этой частицы. И уже через два года в 1937 г. в космических лучах с помощью камеры Вильсона была обнаружена частица с массой покоя равной примерно 200 массам покоя электрона. Вначале считалось, что это и есть предсказанный Юкавой мезон. Однако более детальное исследование свойств этой частицы показало, что обнаруженные в космических лучах мезоны взаимодействуют с нейтронами и протонами не достаточно сильно, как это должно было быть для переносчиков ядерного взаимодействия. Они не захватывались атомными ядрами, а распадались с испусканием электронов. Первоначальный энтузиазм сменился некоторым разочарованием. Наконец в 1947 году также в космических лучах была обнаружена еще одна частица, которая сильно взаимодействовала с протонами и нейтронами и была той самой частицей, которую предсказал Юкава. Ее назвали π-мезоном или пионом. Существует три разновидности π-мезонов: отрицательно заряженный π-мезон с массой ~140 МэВ, его положительно заряженная античастица π+-мезон, и нейтральный π0-мезон с массой ~135 МэВ. Они одинаковым образом ведут себя относительно сильных взаимодействий. Поэтому так же как протон и нейтрон объединяются в изотопический дублет, пионы объединяются в изотопический триплет.
    Пионы, нейтроны и протоны принадлежат к одному классу частиц, называемых адронами. Их отличительная черта - участие в сильных ядерных взаимодействиях.

Лептоны

    Открытая в 1937 году частица тоже была названа мезоном, μ-мезоном. Он имеет массу ~106 МэВ и существует в двух разновидностях - отрицательно заряженная частица и положительно заряженная античастица. Сегодня μ-мезон предпочитают называть мюоном. Мюоны - нестабильные частицы и распадаются по схеме

μ→ e− + aneutrinoe + νμ,  μ+→ e+ νeaneutrinoμ ,

с образованием в конечном состоянии электрона (позитрона), электронного антинейтрино aneutrinoe (нейтрино νe) и мюонного нейтрино νμ  (антинейтрино aneutrinoμ ). На то, что электронные и мюонные нейтрино разные частицы, впервые было указано в 1957 году М. Марковым и Ю. Швингером. Эта гипотеза была подтверждена в 1962 году в экспериментах на ускорителе в Брукхейвене. Было показано, что при взаимодействии мюонных нейтрино рождаются мюоны

νμ + n → p + μ-

и не рождаются электроны

νμ + n p + е.

Мюоны, электроны и нейтрино относятся к семейству лептонов. Еще одна частица этого семейства tau-лептон (таон) была открыта М. Перлом в 1979 году в реакции e+ + e τ+ + τ. Она почти в два раза тяжелее протона и может распадаться не только подобно мюону на лептоны, но и на адроны.
    Таким образом, семейство лептонов состоит из трех отрицательно заряженных частиц (e, μ, τ) и соответствующих им трех типов нейтрино (νe, νμ, ντ). Лептоны e, μ, τ и их античастицы e+, μ+, τ+ участвуют в электромагнитных и слабых взаимодействиях, лептоны νe, νμ, ντ и их античастицы e, μ, τ - только в слабых.
    Принципиальное значение имеет вопрос о массе нейтрино. Масса каждого типа нейтрино много меньше массы соответствующего заряженного лептона. Современные экспериментальные оценки масс нейтрино следующие

m(νe) < 2 эВ, m(νμ) < 0.17 МэВ, m(ντ) < 15.5 МэВ.

Существует космологическое ограничение на суммарную массу всех типов нейтрино

 m(νe) + m(νμ) + m(ντ) < 0.28 эВ.

Если нейтрино имеет массу, то возможны распады и осцилляции нейтрино, смешивание нейтрино различных типов. Гипотеза об осцилляции нейтрино была выдвинута в 1957 году Б. Понтекорво. В настоящее время интенсивно проводятся эксперименты по измерению массы покоя нейтрино и определению параметров осцилляций нейтрино.

17.01.2017

На головную страницу

Рейтинг@Mail.ru