Семинар 4. Уравнение Шредингера

    Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера
4.2. Частица в прямоугольной яме с бесконечными стенками
4.3. Гармонический осциллятор
4.4. Частица в поле с центральной симметрией
4.5. Орбитальный момент количества движения
4.6. Спин
4.7. Полный момент количества движения
4.8. Квантовые числа
       Задачи

4.1. Уравнение Шредингера

    В квантовой физике изменение состояния частицы описывается уравнением Шредингера

(4.1)

где op_H – оператор Гамильтона – аналог классической функции Гамильтона

                                                

в которой vec_p и vec_r заменены операторами импульса op_px, op_py, op_pz и координаты , , :

х →  = х,            y →  = y,          z →  = z,

(4.2)

 

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

где op_H – гамильтониан системы.

Разделение переменных. Запишем Ψ(vec_r,t) = ψ(vec_r)θ(t), где ψ является функцией координат, а θ – функция времени. Если op_H не зависит от времени, тогда уравнение op_Hψ = iћψ принимает вид θop_Hψ = iћψθ или

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

Следовательно,

θ(t) = exp(−iEt/ћ),  op_Hψ(vec_r) = Eψ(vec_r) и  Ψ(vec_r,t) = ψ(vec_r)exp(−iEt/ћ).

Уравнение op_Hψ(vec_r) = Eψ(vec_r) называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

или

Для трехмерной системы с массой m в поле с потенциалом U(vec_r):

−(ћ2/2m)Δψ(vec_r) + U(vec_r)ψ(vec_r) = Eψ(vec_r),

где Δ – лапласиан.

    Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

op_Hψ(vec_r) = Eψ(vec_r). (4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(vec_r,t) = ψ(vec_r)exp(−iEt/ћ) (4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(vec_r,t)|, то она ~ |ψ(x,y,z)|2, т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

    Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

(4.5)


Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx, (4.7)

 где k = (2mE/ћ2)1/2. Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0. (4.8)

 kL = nπ,   n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

  n = 1, 2, 3, … (4.9)

    Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
    Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

имеет вид

(4.10)

    В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E < ћ2π2/(2mL2). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

 Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ|2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

    Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2),    n = 0, 1, 2, (4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
    С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

  n = 1, 2, …

Одномерный гармонический осциллятор:

En = ћω0(n + 1/2),    n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

    В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

(4.14)

    Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ), (4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

op_L2Ylm(θ,φ) = ћ2l(l +1)Ylm(θ,φ) (4.16)

или

Ylm(θ,φ) = ћ2l(l +1)Ylm(θ,φ)
 (4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента op_L2. Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
    Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ2/mee2 ≈ 0.529·108 cм.

Решения уравнения

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
    Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞.  Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

    Собственные значения L2 и Lz являются решением уравнений

op_L2Ylm(θ,φ) = L2Ylm(θ,φ)     и       op_LzYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

   L2 = ћ2l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm,  где m = 0, ± 1, ± 2, ± 3,…, ± l.

    Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0 s-состояние
l = 1 p-состояние
l = 2 d-состояние
l = 3 f-состояние
l = 4 g-состояние
l = 5 h-состояние
и. т. д.  

    Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0  волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
    Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

(4.18)

    Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Рис. 4.4 Возможные ориентации вектора vec_L при квантовом числе l = 2.

    Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

=
= 6.58·10-22√6 МэВ·сек ≈ 2.6·10-34 Дж·сек.

    Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление vec_L по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора vec_L, что является очевидным следствием сферической симметрии системы.
    Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
    Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией eimφ, примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция eimφ  удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

    Спин − собственный момент количества движения частицы. Между значением вектора спина vec_S и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента vec_L и орбитальным квантовым числом l:

vec_S2 = ћ2s(s + 1) (4.19)

    В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
    Как и в случае других квантовых векторов, проекция вектора спина vec_S на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ,..., ±1/2ћ или 0.

    Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2,  то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

    Полный момент количества движения частицы или системы частиц vec_J является векторной суммой орбитального vec_L и спинового vec_S моментов количества движения.

vec_J = vec_L + vec_S.

Квадрат полного момента имеет значение:

vec_J2 = ћ2j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов vec_L и vec_S, может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1,..., |l − s|

Проекция vec_J на выделенную ось Jz также принимает дискретные значения:

Jz = ћjz;  = -j, -j + 1,..., j − 1, j.

Число значений проекции Jz равно 2j + 1. Если для vec_L и vec_S определены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

    Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

n Радиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, j Полный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. vec_J2 = ћ2j(j + 1).
L, l Орбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L2 = ћ2l(l + 1).
m Магнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, s Спиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S2 = ћ2s(s + 1).
sz Квантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0. 
P или π Пространственная четность. Характеризует поведение системы при пространственной инверсии vec_r→ -vec_r (зеркальном отражении). Полная четность частицы Р = π(-1)l , где π – её внутренняя четность, а (-1)l – её орбитальная четность. Внутренние четности кварков положительные, антикварков  - отрицательные.
I Изоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

    Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

    Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма
  • Потенциал типа гармонического осциллятора U = kr2,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
    Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
    Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (vec_r→ -vec_r). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
    Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

 

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10-8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

[Решение]

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.  

[Решение]

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

[Решение]

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

[Решение]

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1,1/2:3/2>, |l,s:j>p = |1,1/2:3/2>?
Б. Два нейтрона находятся в состояниях с  |l,s:j>1 = |1,1/2:3/2> и  |l,s:j>2 = |1,1/2:3/2>?

[Решение]

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√l(l +1) = √2ћ;
Б) j = 5/2, 3/2;  jz = ±5/2, ±3/2, ±1/2; L = ћ√l(l +1) = √6ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
       Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1, 
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона op_H электронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Aei(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1/2L, x = 2/3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале (1/3L,2/3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L)  = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения <x> и <x2> для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом = 3. Какие значения могут принимать Lz и L2?
Ответ: Lz = -3ћ, -2ћ,...3ћ; L2 = 12ћ2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L2?

previoushomenext

На головную страницу

Рейтинг@Mail.ru

26.10.2016