На головную страницу 

Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

На головную страницу

Рейтинг@Mail.ru

 

КВАНТОВЫЕ ЧИСЛА
Quantum numbers

    Квантовые числа – целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние электрона в атоме водорода определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Еn электрона (Еn = -13.6/n2 эВ); орбитальным квантовым числом l = 0, 1, 2, …, n – 1, определяющим величину L орбитального момента количества движения электрона (L = ћ[l(l + 1)]1/2); магнитным квантовым числом m < ± l , определяющим направление вектора орбитального момента; и квантовым числом ms = ± 1/2, определяющим направление вектора спина электрона.

Основные квантовые числа

n

Главное квантовое число: n = 1, 2, … infin.

j

Квантовое число полного углового момента. j никогда не бывает
отрицательным и может быть целым (включая ноль) или полуцелым
в зависимости от свойств рассматриваемой системы. Величина полного углового
момента J связана с j соотношением
J2 = ћ2j(j + 1). vec_J = vec_L + vec_S,
где vec_L и vec_S векторы орбитального и спинового угловых моментов.

l

Квантовое число орбитального углового момента l может принимать
только целые значения: l = 0, 1, 2, … ∞. Величина орбитального углового L
момента связана с l соотношением L2 = ћ2l(l + 1).

m

Магнитное квантовое число. Проекция полного, орбитального или спинового
углового момента на выделенную ось (обычно ось z) равна mћ.
Для полного момента mj = j, j-1, j-2, …, - (j-1), - j. Для орбитального момента
ml = l, l-1, l-2, …, -(l-1), -l.
Для спинового момента электрона, протона, нейтрона, кварка ms = ±1/2

s

Квантовое число спинового углового момента s может быть либо целым,
либо полуцелым. s - неизменная характеристика частицы,
определяемая ее свойствами. Величина спинового момента S связана с s
соотношением S2 = ћ2s(s + 1).

P

Пространственная четность. Она равна либо +1, либо -1 и
характеризует поведение системы при зеркальном отражении. P = (-1)l.

    Существование сохраняющихся (неизменных во времени) физических величин для данной системы тесно связано со свойствами симметрии этой системы. Так, если изолированная система не изменяется при произвольных поворотах, то у неё сохраняется орбитальный момент количества движения. Это имеет место для атома водорода, в котором электрон движется в сферически симметричном кулоновском потенциале ядра и поэтому характеризуется неизменным квантовым числом l. Внешнее возмущение может нарушать симметрию системы, что приводит к изменению самих квантовых чисел. Фотон, поглощенный атомом водорода, может “перебросить” электрон на другую орбиту с другими значениями квантовых чисел.
    Помимо квантовых чисел, отражающих пространственно-временную симметрию микросистемы, существенную роль у частиц играют так называемые внутренние квантовые числа. Ряд из них, такие как спин и электрический заряд, сохраняются во всех взаимодействиях, другие в некоторых взаимодействиях не сохраняются. Так кварковое квантовое число странность, сохраняющееся в сильном взаимодействии, не сохраняется в слабом взаимодействии, что отражает разную природу этих взаимодействий. Внутренним квантовым числом для кварков и глюонов является также цвет. Цвет кварков может принимать три значения, цвет глюонов – восемь.