На головную страницу 

Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

На головную страницу

Рейтинг@Mail.ru

 

ЯДЕРНЫЙ ВЗРЫВ
Nuclear explosion

    Ядерный взрыв – взрыв, вызванный быстрым освобождением большого количества ядерной энергии. Ядерная энергия может освобождаться в больших количествах в двух процессах – в цепной реакции деления тяжёлых ядер нейтронами и в реакции соединения (синтеза) лёгких ядер. Ядерный взрыв, вызванный первым процессом, обычно называют атомным (взрыв атомной бомбы), второй – термоядерным (водородная бомба). Атомный взрыв впервые осуществлён в США 16 июля 1945 г. В СССР первый атомный взрыв произведён в 1949 г., термоядерный – в 1953 г.
    Для осуществления ядерного взрыва в результате цепной реакции деления необходимо, чтобы масса делящегося вещества (урана-235, плутония-239 и др.) превышала критическую (50 кг для 235U и 11 кг для 239Pu). До взрыва система должна быть подкритической. Переход в надкритическое состояние осуществляется быстрым сближением нескольких кусков делящегося вещества. Для такого сближения обычно используется химический взрыв. При полном делении 1 кг урана выделяется энергия равная энерговыделению при взрыве 20 килотонн тротила, что примерно соответствует бомбам, взорванным в Хиросиме и Нагасаки.


Рис. 1. Схема атомной бомбы.

    Атомный взрыв развивается за счёт экспоненциально растущего со временем числа разделившихся ядер. Среднее время между двумя последовательными актами деления 10-8 сек. Отсюда можно получить для времени полного деления 1 кг ядерной взрывчатки величину 10-7–10-6 сек. Это и есть время атомного взрыва.
    В результате большого энерговыделения в центре атомной бомбы температура поднимается до 108 К, а давление – до 1012 атм. Вещество превращается в разлетающуюся плазму.
    Для осуществления термоядерного взрыва используются реакции синтеза лёгких ядер, в частности, изотопов водорода – дейтерия и трития. Эти реакции могут протекать лишь при очень высоких температурах ~107 К. Быстрый разогрев термоядерной взрывчатки осуществляется предварительным атомным взрывом, например, твёрдой урановой оболочки, внутри которой заключено термоядерное горючее. Термоядерные бомбы значительно мощнее атомных. Обычно их тротиловый эквивалент 100–1000 кт (у атомных бомб он 1–20 кт). Самый мощный ядерный взрыв (60 мегатонн тротила) был произведен в 1961 г. в СССР (Новая Земля) в атмосфере.
    При ядерном взрыве в воздухе образуется мощная ударная волна. Радиус поражения ею обратно пропорционален кубическому корню из энергии взрыва. Для номинальной ядерной бомбы (20 кт) он около 1 км. Освободившаяся энергия в течение нескольких мкс передаётся окружающей среде. Образуется ярко светящийся огненный шар. Через 10-2–10-1 сек он достигает максимального радиуса 150 м (для бомбы 20 кт), температура его падает до 8000 К (ударная волна уходит далеко вперёд). За время свечения (секунды) в электромагнитное излучение переходит 10–20% энергии взрыва. Разреженный нагретый воздух, несущий поднятую с земли радиоактивную пыль, за несколько минут достигает высоты 10–15 км. Далее радиоактивное облако расплывается на сотни км. Ядерный взрыв сопровождается мощным потоком нейтронов и гамма-квантов.


Рис. 2. Схема термоядерной бомбы.