На головную страницу 

Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

На головную страницу

Рейтинг@Mail.ru

 

Квантовая механика
Quantum mechanics

    Квантовая механика – фундаментальная физическая теория, устанавливающая способ описания и законы движения микрочастиц (молекул, атомов, атомных ядер, частиц) во внешних полях. Более формально квантовая механика – это физическая теория систем, у которых физические величины, имеющие размерность углового момента (момента количества движения) сравнимы с постоянной Планка ћ (ћ = h/2π,
h = 6.6.10-34 Дж.с = 4.1.10-15эВ.с). Этому условию, как правило, удовлетворяют микрочастицы. Квантовая механика включает в себя классическую механику как частный случай, реализующийся для макрообъектов. Обычно в нерелятивистской квантовой механике рассматривается движение микрочастиц, для которых скорость v << с, где с – скорость света.
    Квантовая механика в основном была создана в течение первых трёх десятилетий 20-го века благодаря работам М. Планка, А. Эйнштейна, Н. Бора, А. Комптона,
Л. де Бройля, В. Паули, М. Борна, В. Гейзенберга, Э. Шрёдингера и П. Дирака.
    Физической основой квантовой механики является корпускулярно-волновой дуализм, согласно которому любому материальному объекту – частице или волне – присущи как волновые, так и корпускулярные свойства. Корпускулярно-волновой дуализм наиболее ярко проявляется у микрообъектов. Его следствием является необходимость отказа от некоторых классических представлений, возникших в результате наблюдений за движением макроскопических тел. В частности волновые свойства частиц несовместимы с представлением об их движении по определённым классическим траекториям.
    Волновые свойства частицы, например, электрона, требуют и соответствующего “волнового” её описания. В квантовой механике частица описывается комплексной функцией ψ(x,t), называемой волновой функцией, амплитуда которой зависит от пространственных координат х (х – совокупность координат) и времени t. Волновая функция ψ(x,t) полностью определяет состояние частицы. Как известно интенсивность любой волны определяется квадратом её амплитуды. Интенсивность волны, связанной с материальной частицей, определяется квадратом модуля волновой функции, т.е. величиной |ψ|2 = ψ*ψ. Однако, в отличие от классической волны, величина |ψ(х,t)|2 есть вероятность обнаружить частицу в момент времени t в единичном объеме вокруг точки пространства с координатами x. Этот вероятностный характер поведения частицы, во-первых, позволяет отразить волновые свойства объектов при их корпускулярном описании и, во-вторых, принципиально отличает квантовую систему от классической. В классической физике знание положения и импульса частицы в начальный момент и сил, действующих на неё, полностью и однозначно определяет её положение и импульс во все последующие моменты. Т.е. движение классических объектов полностью предопределено (детерминировано). В квантовой механике можно говорить лишь о вероятности обнаружить частицу в каком-то месте пространства, даже при полном знании её начальных кинематических характеристик и всех внешних полей, действующих на неё. И это не связано с какой-то неполнотой квантовых законов, а заложено в природе микрообъектов. Об этом свидетельствуют и соотношения неопределённостей, например, (x,t) Δx·Δp ≈ ћ (Δx – неопределённость в координате, а Δp – неопределённость в импульсе системы). Если потребовать чёткой локализации частицы в пространстве в какой-то момент, т.е. потребовать Δx ≈ 0, то в этот же момент у неё будет полностью неопределённым импульс (Δp ≈ ∞). Таким образом, в следующий момент частица может неконтролируемо переместиться куда угодно и ни о каком предопределённом (детерминированном) движении частицы не может быть и речи.

Состояния в классической и квантовой физике

Классическая физика

Квантовая физика

1. Описание состояния

(x,y,z,px,py,pz)

ψ(x,y,z)

2. Изменение состояния во времени

=∂H/∂p,  = -∂H/∂t,

3. Измерения

x, y, z, px, py, pz

ΔхΔpx ~ splank.gif (65 bytes)
ΔyΔpy ~ splank.gif (65 bytes)
ΔzΔpz ~ splank.gif (65 bytes)

4. Детерминизм. Статистическая теория

Динамическое
(не статистическое) описание

|ψ(x,y,z)|2

5. Гамильтониан
H = p2/2m + U(r) op_h = 2/2m + U(r)

    В квантовой механике для нахождения всего набора (спектра) возможных значений какой-либо физической величины обычно решаются дифференциальные уравнения, в которых каждой наблюдаемой физической величине (энергии, импульсу, угловому моменту, координате и так далее) сопоставляется оператор (обычно дифференциальный). Во многих случаях этот спектр является дискретным (квантованным), что принципиально отличает квантовую механику от классической.
    Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера

где ψ(х,y,z,t) - волновая функция, op_h - оператор Гамильтона (оператор полной энергии системы). В нерелятивистском случае

где m – масса частицы, op_p – оператор импульса, op_U(x,y,z) – оператор потенциальной энергии частицы. Задать закон движения частицы в квантовой механике - это значит, определить значение волновой функции в каждый момент времени в каждой точке пространства. Уравнение Шредингера играет в квантовой механике такую же роль, как и второй закон Ньютона в классической механике. Знание волновой функции квантовой системы и операторов физических величин позволяет вычислить все физические величины, характеризующие данную квантовую систему. В силу недетерминированности квантово-механических предсказаний эти вычисляемые (и наблюдаемые) физические величины носят вероятностный характер, т. е. являются статистическими средними. В результате реализации такой программы можно получить исчерпывающее квантово-механическое описание поведения частицы (системы) в изолированном состоянии или во внешних полях. Так квантово-механическая задача для атома водорода сводится к решению уравнения Шрёдингера для электрона в кулоновском поле протона, с которым он связан. Решением этой задачи является дискретный (квантованный) спектр энергетических состояний (уровней) электрона, квантовые числа, характеризующие электрон в каждом из этих состояний, и, конечно, сами волновые функции электрона в каждом состоянии. Если электрон в атоме водорода не находится в самом нижнем энергетическом состоянии, то атом неустойчив и будет претерпевать эволюцию, вызванную переходами электрона на более низкие энергетические уровни. Вероятности этих переходов также вычисляются методами квантовой механики.