На головную страницу 

Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

На головную страницу

Рейтинг@Mail.ru

 

Эффект Мессбауэра
Moessbauer's effect


Рис. Измерение ширины линии испускания гамма-квантов Г с помощью эффекта Мессбауэра

    Резонансное поглощение фотонами от источника из того же вещества может иметь место только в том случае, когда энергия отдачи ядра R меньше ширины ядерного уровня Г. Мессбауэр исследуя явление резонансного поглощения гамма-квантов понизил температуру источника и обнаружил, что число поглощенных фотонов существенно увеличилось, то есть наблюдалось резонансное поглощение гамма-квантов. Качественно это можно объяснить тем, что в этом случае импульс отдачи получало не отдельное ядро, а весь кристалл, в котором находились ядра, испускающие -кванты. При переходе от свободных атомов к атомам связанных в кристаллической решетке ситуация меняется. С уменьшением температуры источника увеличивается относительное число ядерных переходов с передачей импульса отдачи всему кристаллу. Условия для этого тем благоприятнее, чем ниже температура кристалла и энергия перехода
    Отмеченное явление, получившее название эффекта Мессбауэра, сразу же было применено для измерения ширины уровней. Чтобы наблюдать резонансное поглощение мишенью из 57Fе -квантов, испускаемых источником из 57Fе, нужно скомпенсировать энергию отдачи ядра, которая в сумме составляет 2TR. Если пренебречь естественной шириной уровня, то энергия испускаемых фотонов равна Eγ = Е - TR, тогда как для того, чтобы наблюдался резонанс, они должны иметь энергию Eγ = Е + TR. Один из способов такой компенсации состоит в том, что рассматриваемый радиоактивный источник закрепляют на движущемся устройстве и подбирают скорость так, чтобы разница 2TR компенсировалась за счет эффекта Доплера. Для этого достаточно укрепить исследуемый источник на подвижной каретке и изменять ее скорость v так, чтобы за счет эффекта Доплера сдинуть линию резонансного поглощения в нужную сторону. Между детектором и источником помещают поглотитель того же изотопического состава, что и источник. В отсутствие отдачи резонансное поглощение должно происходить при v = 0. В этом случае число фотонов, регистрируемое детектором, будет минимально, так как фотоны, претерпевшие резонансное поглощение в поглотителе, затем повторно испускаются в разных направлениях и выбывают из прошедшего пучка. При изменении скорости v изменяется доплеровское смещение линии испускания относительно линии поглощения и в результате записывается контур линии, как показано на рис. Ширина ядерных уровней столь мала, что источник нужно перемещать со скоростью, составляющей всего лишь десятые доли сантиметра в секунду.
    Получены мессбауэровские источники с рекордно низким отношением ширины спектральной линии Г к энергии γ-перехода Еγ Г/Еγ ~10-17–10-18. Наиболее важные практические применения мессбауэровской спектроскопии связаны с исследованиями в области физики твёрдого тела (распределение электрических и магнитных полей в кристаллической решётке, радиационных повреждений кристаллов, дефектов кристаллической решётки и др.), измерение гравитационного красного смещения в земных условиях и др.