На головную страницу 

Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

На головную страницу

Рейтинг@Mail.ru

 

Радиоактивность
Radioactivity

    Радиоактивность – самопроизвольные превращения атомных ядер, сопровождающиеся испусканием элементарных частиц или более лёгких ядер. Ядра, подверженные таким превращениям, называют радиоактивными, а процесс превращения – радиоактивным распадом.
    Радиоактивный распад возможен только тогда, когда он энергетически выгоден, т.е. сопровождается выделением энергии. Условием этого является превышение массы М исходного ядра суммы масс mi продуктов распада, т.е. неравенство

M >∑mi.

    Из около 3000 известных ядер (большинство из них получено искусственно) лишь 264 не являются радиоактивными. Основными видами радиоактивного распада являются альфа-распад (испускание ядрами альфа-частиц), бета-распад (испускание (или поглощение) электрона, а также антинейтрино, или испускание позитрона и нейтрино), гамма-распад (испускание гамма-квантов) и спонтанное деление (распад ядра на два осколка сравнимой массы). К более редким видам радиоактивного распада относятся испускание ядрами одного или двух нуклонов, а также испускание фрагментов (кластеров) – лёгких ядер от 12С до 32S. Во всех видах радиоактивности (кроме гамма-радиоактивности) изменяется состав ядра – число протонов Z , массовое число А или и то и другое.
    Важнейшей характеристикой радиоактивности является закон радиоактивного распада, показывающий как со временем t изменяется (в среднем) число N радиоактивных ядер в образце

N(t) = N0e–λt,

где N0 – число исходных ядер в начальный момент (момент их образования или начала наблюдения), а λ – постоянная распада (вероятность распада радиоактивного ядра в единицу времени). Через эту постоянную можно выразить среднее время жизни радиоактивного ядра τ = 1/λ, а также период полураспада T1/2 = ln2/τ. Период полураспада наглядно характеризует скорость распада, показывая за какое время число радиоактивных ядер в образце уменьшится вдвое.
    Следует подчеркнуть, что процесс радиоактивного распада (как и все процессы в микромире) это случайный процесс и можно говорить лишь о вероятности его протекания. Так если в образце N радиоактивных ядер, то в единицу времени не обязательно произойдёт λN актов радиоактивного распада. Это число может быть и больше и меньше λN, которое в данном случае является лишь средним (математическим ожиданием).
    На характеристики радиоактивного распада, в частности его скорость (период полураспада), оказывают существенное влияние силы (взаимодействия), вызывающие распад. Альфа-распад изначально вызывается сильным взаимодействием, но его скорость определяется кулоновским барьером (электромагнитным взаимодействием). Бета-распад вызывается слабым взаимодействием, а гамма-распад – электромагнитным.
    Явление радиоактивности открыто в 1896 г. А. Беккерелем. В 1899 г. Э. Резерфорд открыл, что уран излучает положительно заряженные частицы (α-частицы) и отрицательно заряженные β-частицы (электроны). В 1900 г. П. Виллард открыл нейтральные частицы (γ-кванты) при изучении распада урана. Спонтанное деление ядер открыто в 1940 г. К.А. Петржаком и Г.Н. Флёровым.


См. также