На головную страницу 

Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

На головную страницу

Рейтинг@Mail.ru

 

Бета-распад
Beta-decay

    Бета-распад состоит в том, что ядро (А, Z) самопроизвольно испускает лептоны 1-го поколения – электрон (или позитрон) и электронное анти­нейтрино (или нейтрино), переходя при этом в ядро с тем же массовым числом А, но с атомным номером Z, на единицу бoльшим или меньшим. Существует три типа β-распада - β--распад, β+-распад и е-захват.

β--распад: (A,Z) → (A,Z+1) + е- + е,
β+-распад: (A,Z) → (A,Z-1) + е+ + νе,
е-захват: (A,Z) + е- → (A,Z-1) + νе.

    Главной особенностью β-распада является то, что он обусловлен слабым взаимодействием. Бета-распад - процесс внутринуклонный. В ядре распадается одиночный нуклон. Происходящие при этом внутри ядра превращения нуклонов и энергетические условия соответствующего типа β-распада выглядят так (массу е, νе можно считать нулевой):

β--распад (n → р + е- + е),    M(A,Z) > M(A,Z+1) + mе,
β+-распад (р → n + е+ + νе),    M(A,Z) > M(A,Z-1) + mе,
е-захват (р + е- → n + νе),    M(A,Z) + mе > (A,Z-1).

При e-захвате ядро поглощает один из электронов атомной оболочки (обычно из ближайшей к нему K-оболочки), испуская нейтрино.
    Родственными β-распаду являются процессы взаимодействия нейтрино и антинейтрино с ядрами:

νе +  (A,Z) → (A,Z+1) + e-,     е +  (A,Z) → (A,Z-1) + e+.

    Если α-распад наблюдается только в случае самых тяжелых и некоторых редкоземельных ядер, то β-радиоактивные ядра гораздо более многочисленны и имеются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая массовыми числами самых тяжелых ядер.
    За счет того, что интенсивность слабых взаимодействий, ответственных за β-распад, на много порядков меньше ядерных, периоды полураспада β-радиоактивных ядер в среднем имеют порядок минут и часов. β-радиоактивный процесс - сложное явление, связанное как с физикой слабых взаимодействий, так и со структурой ядра. Для того чтобы выполнялись законы сохранения энергии и углового момента при распаде нуклона внутри ядра, последнее должно перестраиваться. Поэтому период полураспада, а также другие характеристики бета-распада зависят от того, насколько сложна эта перестройка. В результате периоды β-распада варьируются почти в столь же широких пределах, как и периоды β-распада. Они лежат в интервале T1/2(β) = 10-6 с – 1017 лет. На малую интенсивность слабых взаимодействий указывает большое время жизни нейтрона (≈15 мин).
    Существует иерархия β-распадов по их вероятности. Бета-распады, идущие с наибольшей вероятностью, называются разрешёнными. Менее вероятные переходы (с большими периодами) называются запрещёнными и делятся на запрещённые переходы 1-го порядка, 2-го порядка и т.д. Порядок запрещённости β-перехода определяется орбитальным моментом l, уносимым лептонной парой. При прочих равных условиях вероятность вылета пары лептонов с орбитальным моментом 1 и
l = 0 определяется соотношением

ωl0 ≈ (R/)2l ,

R – радиус ядра, – длина волны вылетающих лептонов. При Qβ ≈ 1 МэВ и R = 5 Фм, R/ = Rp/ћ = RQβ/ћc ≈ 0.02.
    Переходы, для которых суммарный спин лептонной пары e + vec_sν = 0  (спины лептонов антипараллельны), называются переходами Ферми. Переходы, для которых суммарный спин лептонной пары e + vec_sν = 1, называются переходами Гамова-Теллера.


 См. также